Advertisement

Hydrobiologia

, Volume 767, Issue 1, pp 185–195 | Cite as

Site- and species-specific contribution of charophytes to calcium and phosphorus cycling in lakes

  • Lech KufelEmail author
  • Małgorzata Strzałek
  • Elżbieta Biardzka
Primary Research Paper

Abstract

Our aim was to test the hypothesis that precipitation of calcite encrustation and accumulation of phosphorus by charophytes depend on both habitat conditions and plant species. To do this, we analysed the amount of calcite and phosphorus fractions in six charophyte species from ten lakes of different water chemistry. Percent of calcite encrustation in plant biomass was species specific—Chara rudis and Chara tomentosa produced most and Chara globularis and Chara intermedia least calcite. Lake water supersaturation with calcium carbonate was not necessary to induce calcite formation. Calcium and soluble phosphorus in lake water exerted significant (positive and negative, respectively) effect on calcite variability across species. Soluble and total phosphorus in lake water, however, were poor predictors of total phosphorus variability in plants. All plants accumulated more inorganic than organic phosphorus. Concentration of calcium-bound phosphorus per gram of calcite showed significant interspecific differences. Our data suggest that charophytes are capable of accumulating relatively large amounts of calcium carbonate and phosphorus (mostly calcium-bound P) in lake sediments.

Keywords

Charophytes Calcite Organic phosphorus Inorganic phosphorus Deposition 

Notes

Acknowledgments

Constructive remarks of Dr Sidinei M. Thomaz, the editor, and two anonymous reviewers greatly improved this version of the paper. The study was supported by statutory funds of the Faculty of Life Sciences, Siedlce University of Natural Sciences and Humanities, Poland.

References

  1. Anadón, P., R. Utrilla & A. Vázquez, 2002. Mineralogy and Sr-Mg geochemistry of charophyte carbonates: a new tool for paleolimnological research. Earth and Planetary Science Letters 197: 205–214.CrossRefGoogle Scholar
  2. Blindow, I., A. Hargeby & G. Andersson, 2002. Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquatic Botany 72: 315–334.CrossRefGoogle Scholar
  3. Blindow, I., A. Hargeby & S. Hilt, 2014. Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia 737: 99–110.CrossRefGoogle Scholar
  4. Choiński, A., 1991. Katalog jezior Polski. Część druga—Pojezierze Mazurskie. [Catalogue of lakes of Poland. Part two—Masurian Lakeland] Wydawnictwo Naukowe UAM, Poznań.Google Scholar
  5. Choiński, A., 1992. Katalog jezior Polski. Część trzecia—Pojezierze Wielkopolsko-Kujawskie i jeziora na południe od linii zasięgu zlodowacenia bałtyckiego. [Catalogue of lakes of Poland. Part three—Wielkopolska-Kujawy Lakeland and lakes south of the line of the Baltic glaciation range] Fundacja Warta, Poznań.Google Scholar
  6. Ciecierska, H., 2008. Makrofity jako wskaźniki stanu ekologicznego jezior. [Macrophytes as indicators of the ecological status of lakes] Rozprawy i monografie 139. Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego, Olsztyn.Google Scholar
  7. Danen-Louwerse, H. J., L. Lijklema & M. Coenraats, 1995. Coprecipitation of phosphate with calcium carbonate in Lake Veluwe. Water Research 29: 1781–1785.CrossRefGoogle Scholar
  8. Dittrich, M. & M. Obst, 2004. Are picoplankton responsible for calcite precipitation in lakes? Ambio 33: 559–564.CrossRefPubMedGoogle Scholar
  9. Golterman, H. L., 1969. Methods for Chemical Analysis of Fresh Waters. Blackwell Scientific Publications, Oxford and Edinburgh.Google Scholar
  10. Groleau, A., G. Sarazin, B. Vinçon-Leite, B. Tassin & C. Quiblier-Llobéras, 2000. Tracing calcite precipitation with specific conductance in hard water alpine lake (Lake Bourget). Water Research 34: 4151–4160.CrossRefGoogle Scholar
  11. Ishikawa, M. & M. Ichikuni, 1981. Coprecipitation of phosphate with calcite. Geochemical Journal 15: 283–288.CrossRefGoogle Scholar
  12. Kawahata, C., M. Yamamuro & Y. Shiraiwa, 2013. Changes in alkaline band formation and calcification of corticated charophyte Chara globularis. SpringerPlus 2: 85.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Kleiner, J., 1988. Coprecipitation of phosphate with calcite in lake water: a laboratory experiment modelling phosphorus removal with calcite in Lake Constance. Water Research 22: 1259–1265.CrossRefGoogle Scholar
  14. Królikowska, J., 1997. Eutrophication processes in a shallow, macrophyte-dominated lake—species differentiation, biomass and distribution of submerged macrophytes in Lake Łuknajno (Poland). Hydrobiologia 342(343): 411–416.CrossRefGoogle Scholar
  15. Kufel, L. & I. Kufel, 1997. Eutrophication processes in a shallow, macrophyte-dominated lake—nutrient loading to and flow through Lake Łuknajno (Poland). Hydrobiologia 342(343): 387–394.CrossRefGoogle Scholar
  16. Kufel, L. & I. Kufel, 2002. Chara beds acting as nutrient sinks in shallow lakes—a review. Aquatic Botany 72: 249–260.CrossRefGoogle Scholar
  17. Kufel, L. & K. Rymuza, 2014. Comparing the effect of phytoplankton and a charophyte on calcite precipitation in lake water: experimental approach. Polish Journal of Ecology 62: 431–439.CrossRefGoogle Scholar
  18. Kufel, L., E. Biardzka & M. Strzałek, 2013. Calcium carbonate incrustation and phosphorus fractions in five charophyte species. Aquatic Botany 109: 54–57.CrossRefGoogle Scholar
  19. Lin, Y.-P. & P. C. Singer, 2005. Inhibition of calcite crystal growth by polyphosphates. Water Research 39: 4835–4843.CrossRefPubMedGoogle Scholar
  20. Nõges, P., L. Tuvikene, T. Feldmann, L. Tõnno, H. Künnap, H. Luup, J. Salujõe & T. Nõges, 2003. The role of charophytes in increasing water transparency: a case study of two shallow lakes in Estonia. Hydrobiologia 506–509: 567–573.CrossRefGoogle Scholar
  21. Otsuki, A. & R. G. Wetzel, 1972. Coprecipitation of phosphate with carbonates in a marl lake. Limnology and Oceanography 17: 763–767.CrossRefGoogle Scholar
  22. Pełechaty, M., A. Pukacz, K. Apolinarska, A. Pełechata & M. Siepak, 2013. The significance of Chara vegetation in the precipitation of lacustrine calcium carbonate. Sedimentology 60: 1017–1035.CrossRefGoogle Scholar
  23. Pentecost, A., 1984. The growth of Chara globularis and its relationship to calcium carbonate deposition in Malham Tarn. Field Studies 6: 53–58.Google Scholar
  24. Pereyra-Ramos, E., 1981. The ecological role of Characeae in the lake littoral. Ekologia Polska 29: 167–209.Google Scholar
  25. Psenner, R., B. Bostrom, M. Dinka, K. Pettersson, R. Pucsko & M. Sager, 1988. Fractionation of phosphorus in suspended matter and sediment. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie 30: 98–103.Google Scholar
  26. Reddy, M. M., 1977. Crystallization of calcium carbonate in the presence of trace concentrations of phosphorous-containing anions: 1. Inhibition by phosphate and glycerophosphate ions at pH 8.8 and 25°C. Journal of Crystal Growth 41: 287–295.CrossRefGoogle Scholar
  27. Rodrigo, M. A., C. Rojo, M. Alvarez-Cobelas & S. Cirujano, 2007. Chara hispida beds as a sink of nitrogen: evidence from growth, nitrogen uptake and decomposition. Aquatic Botany 87: 7–14.CrossRefGoogle Scholar
  28. Sender, J., 2009. Hydrobotanical characteristic of lakes used for recreational purposes of Łęczna-Włodawa Lakeland. Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego 6: 277–284.Google Scholar
  29. Siong, K. & T. Asaeda, 2006. Does calcite encrustation in Chara provide a phosphorus nutrient sink? Journal of Environmental Quality 35: 490–494.CrossRefPubMedGoogle Scholar
  30. Siong, K., T. Asaeda, T. Fujino & A. Redden, 2006. Difference characteristics of phosphorus in Chara and two submersed angiosperm species: implications for phosphorus nutrient cycling in an aquatic ecosystem. Wetlands Ecology and Management 14: 505–510.CrossRefGoogle Scholar
  31. Solińska-Górnicka, B. & E. Symonides, 2001. Long-term changes in the flora and vegetation of Lake Mikołajskie (Poland) as a result of its eutrophication. Acta Societatis Botanicorum Poloniae 4: 323–334.Google Scholar
  32. Stabel, H.-H., 1986. Calcite precipitation in Lake Constance: chemical equilibrium, sedimentation, and nucleation by algae. Limnology and Oceanography 31: 1081–1093.CrossRefGoogle Scholar
  33. Strong, A. E. & B. J. Eadie, 1978. Satellite observations of calcium carbonate precipitations in the Great Lakes. Limnology and Oceanography 23: 877–887.CrossRefGoogle Scholar
  34. Stumm, W. & J. J. Morgan, 1970. Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley, New York.Google Scholar
  35. Van den Berg, M. S., H. Coops, J. Simons & J. Pilon, 2002. A comparative study of the use of inorganic carbon resources by Chara aspera and Potamogeton pectinatus. Aquatic Botany 72: 219–233.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lech Kufel
    • 1
    Email author
  • Małgorzata Strzałek
    • 1
  • Elżbieta Biardzka
    • 1
  1. 1.Institute of BiologySiedlce University of Natural Sciences and HumanitiesSiedlcePoland

Personalised recommendations