Advertisement

Hydrobiologia

, Volume 769, Issue 1, pp 121–135 | Cite as

Assessing the societal benefits of river restoration using the ecosystem services approach

  • Jan E. Vermaat
  • Alfred J. Wagtendonk
  • Roy Brouwer
  • Oleg Sheremet
  • Erik Ansink
  • Tim Brockhoff
  • Maarten Plug
  • Seppo Hellsten
  • Jukka Aroviita
  • Luiza Tylec
  • Marek Giełczewski
  • Lukas Kohut
  • Karel Brabec
  • Jantine Haverkamp
  • Michaela Poppe
  • Kerstin Böck
  • Matthijs Coerssen
  • Joel Segersten
  • Daniel Hering
RIVER RESTORATION EFFECTS

Abstract

The success of river restoration was estimated using the ecosystem services approach. In eight pairs of restored–unrestored reaches and floodplains across Europe, we quantified provisioning (agricultural products, wood, reed for thatching, infiltrated drinking water), regulating (flooding and drainage, nutrient retention, carbon sequestration) and cultural (recreational hunting and fishing, kayaking, biodiversity conservation, appreciation of scenic landscapes) services for separate habitats within each reach, and summed these to annual economic value normalized per reach area. We used locally available data and literature, did surveys among inhabitants and visitors, and used a range of economic methods (market value, shadow price, replacement cost, avoided damage, willingness-to-pay survey, choice experiment) to provide final monetary service estimates. Total ecosystem service value was significantly increased in the restored reaches (difference 1400 ± 600 € ha−1 year−1; 2500 − 1100, p = 0.03, paired t test). Removal of one extreme case did not affect this outcome. We analysed the relation between services delivered and with floodplain and catchment characteristics after reducing these 23 variables to four principal components explaining 80% of the variance. Cultural and regulating services correlated positively with human population density, cattle density and agricultural N surplus in the catchment, but not with the fraction of arable land or forest, floodplain slope, mean river discharge or GDP. Our interpretation is that landscape appreciation and flood risk alleviation are a function of human population density, but not wealth, in areas where dairy farming is the prime form of agriculture.

Keywords

Nutrient retention River corridor Wetlands Flood control Biodiversity Economic valuation 

Notes

Acknowledgments

This paper is a contribution from the EU seventh framework funded research project REFORM (Grant Agreement 282656). We thank our colleagues in the project for the cooperative spirit and for thinking through the most useful study design we could simply adopt, and Tom Buijse for his energetic project coordination.

Supplementary material

10750_2015_2482_MOESM1_ESM.pdf (112 kb)
Supplementary material 1 (PDF 112 kb)

References

  1. Acuña, V., J. Ramon Diez, L. Flores, M. Meleason & A. Elosegi, 2013. Does it make sense to restore rivers for their ecosystem services? Journal of Applied Ecology 50: 988–997.CrossRefGoogle Scholar
  2. Banaszuk, P. & A. Kamocki, 2008. Effects of climatic fluctuations and land-use changes on the hydrology of temperate fluvigenous mire. Ecological Engineering 32: 133–146.CrossRefGoogle Scholar
  3. Banaszuk, P., A. Wysocka-Czubaszek & P. Kondratiuk, 2005. Spatial and temporal patterns of groundwater chemistry in the rver riparian zone. Agriculture Ecosystems & Environment 107: 167–179.CrossRefGoogle Scholar
  4. Bateman, I. J., G. M. Mace, C. Fezzi, G. Atkinson & R. K. Turner, 2010. Economic analysis for ecosystem service assessments. Environmental and Resource Economics 48: 177–218.CrossRefGoogle Scholar
  5. Benayas, J. M. R., A. C. Newton, A. Diaz & J. M. Bullock, 2007. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325: 1121–1124.CrossRefGoogle Scholar
  6. Bernhardt, E. S. & M. A. Palmer, 2011. River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecological Applications 21: 1926–1931.CrossRefPubMedGoogle Scholar
  7. Bernhardt, E. S., M. A. Palmer, J. D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hasset, R. Jenkinson, S. Katz, G. M. Kodolf, P. S. Lake, R. Lave, J. L. Meyr, T. K. O’Donnell, L. Pagano, B. Powell & E. Sudduth, 2005. Synthezising U.S. river restoration efforts. Science 308: 636–637.CrossRefPubMedGoogle Scholar
  8. Bouma, J. A. & P. J. H. Van Beukering, 2015. Ecosystem Services – from Concept to Practice. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  9. Brander, L., J. E. Vermaat & R. J. G. M. Florax, 2006. The empirics of wetland valuation: a meta-analysis. Environmental and Resource Economics 33: 223–250.CrossRefGoogle Scholar
  10. Brander, L., R. Brouwer & A. Wagtendonk, 2013. Economic valuation of regulating services provided by wetlands in agricultural landscapes: a meta-analysis. Ecological Engineering 56: 89–96.CrossRefGoogle Scholar
  11. Brierley, G. J. & K. A. Fryirs, 2005. Geomorphology and River Management: Applications of the River Styles Framework. Cambridge University Press, Cambridge.Google Scholar
  12. Brockhoff, T., 2013. River restoration along the Regge – a comparative analysis of the effects of river restoration on the valuation of ecosystem services. MSc Thesis, Environment and Resource Management VU University, Amsterdam.Google Scholar
  13. Brouwer, R., I. H. Langford, I. J. Bateman, T. C. Crowards & R. K. Turner, 1999. A meta-analysis of wetland contingent valuation studies. Regional Environmental Change 1: 47–57.CrossRefGoogle Scholar
  14. Brouwer, R., M. Hofkes & V. Linderhof, 2008. General equilibrium modelling of the direct and indirect economic impacts of water quality improvements in the Netherlands at national and river basin scale. Ecological Economics 66: 127–140.CrossRefGoogle Scholar
  15. Bubeck, P., De Moel. H., 2010. Sensitivity analysis of flood damage calculations for the river Rhine. Study for DGWATER, final report, IVM Institute for Environmental Studies, VU University Amsterdam.Google Scholar
  16. Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venai, A. Narwani, G. M. Mace, D. Tilman, D. A. Wardle, A. P. Kinzig, G. C. Daily, M. Loreau, J. B. Grace, A. Larigauderie, D. S. Srivastava & S. Naeem, 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.CrossRefPubMedGoogle Scholar
  17. Carpenter, S. R., H. A. Mooney, J. Agard, D. Capistrano, R. S. DeFries, S. Díaz, T. Dietz, A. K. Duraiappah, A. Oteng-Yeboah, H. M. Pereira, C. Perrings, W. V. Reidl, J. Sarukhan, R. J. Scholes & A. Whyte, 2009. Science for managing ecosystem services: beyond the millennium ecosystem assessment. Proceedings of the National Academy of Sciences 106: 1305–1312.CrossRefGoogle Scholar
  18. Coersen, M., 2015. Ecosystem services valuation of degraded and non-degraded river segments of the Morrumsån river in Sweden. BSc Thesis Earth Sciences and Economics, VU University, Amsterdam.Google Scholar
  19. Davies, C. E., Moss, D., Hill, M. O., 2004. EUNIS habitat classification revised 2004. Report to the European Environment Agency and the European Topic Centre on Nature Protection and Biodiversity. Centre for Ecology and Hydrology, Dorchester. Available at http://eunis.eea.eu.int/index.jsp.
  20. DEFRA, 2007. An Introductory Guide to Valuing Ecosystem Services. Department for Environment, Food and Rural Affairs, London.Google Scholar
  21. De Groot, R. S., R. Alkemade, L. Braat, L. Hein & L. Willemen, 2010. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity 7: 260–272.CrossRefGoogle Scholar
  22. De Klein, J. J. M. & A. A. Koelmans, 2011. Quantifying seasonal export and retention of nutrients in West European lowland rivers at catchment scale. Hydrological Processes 25: 2102–2111.CrossRefGoogle Scholar
  23. Derwisch, S., L. Schwendemann, R. Olschewski & D. Holscher, 2009. Estimation and economic valuation of aboveground carbon storage of Tectona grandis plantations in Western Panama. New Forests 37: 227–240.CrossRefGoogle Scholar
  24. Dubgaard, A., M. Kallesøe, J. Ladenburg & M. Pedersen, 2005. Cost-benefit analysis of the Skjern river restoration in Denmark. In Brouwer, R. & D. Pearce (eds), Cost Benefit Analysis and Water Resource Management. Edward Elgar Publishing, Cheltenham.Google Scholar
  25. Fisher, B., R. K. Turner & P. Morling, 2009. Defining and classifying ecosystem services for decision making. Ecological Economics 68: 643–653.CrossRefGoogle Scholar
  26. Gielczewski, M., 2003. The Narew river basin: a model for the sustainable management of agriculture, nature and water supply. PhD Thesis, Utrecht University.Google Scholar
  27. Gilvear, D. J., C. J. Spray & R. Casas-Mulet, 2013. River rehabilitation for the delivery of multiple ecosystem services at the river network scale. J Env Manage 126: 30–43.CrossRefGoogle Scholar
  28. Gradzinski, R., J. Baryla, M. Doktor, D. Gmur, M. Gradzinski, A. Kedzior, M. Paszkowski, R. Soja, T. Zielinski & S. Zurek, 2003. Vegetation-controlled modern anastomosing system of the upper Narew River (NE Poland) and its sediments. Sedimentary Geology 157: 253–276.CrossRefGoogle Scholar
  29. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. Past: paleontological statistics Software package for education and data analysis. Palaeontolia Electronica 4: 4.Google Scholar
  30. Haverkamp, J., 2014. Assessing river restoration of two Austrian rivers, the Enns and the Drau, a comparative analysis of river restoration by valuing ecosystem services. MSc Thesis, Transnational ecosystem-based Water Management, Radboud University Nijmegen, The Netherlands and University of Duisburg-Essen.Google Scholar
  31. Hering, D., J. Arovitta, A. Baattrupp-Pedersen, K. Brabec, T. Buijze, F. Ecke, N. Friberg, M. Gielczewski, K. Januschke, J. Kohler, B. Kupilas, A. Lorenz, S. Muhar, A. Paillex, M. Poppe, T. Schmidt, S. Schmutz, J. E. Vermaat, P. Verdonschot, R. Verdonschot, 2015. Contrasting the roles of section length and instream habitat enhancement for river restoration success: a field study on 20 European restoration projects. Journal of Applied Ecology. doi: 10.1111/1365-2664.12531.
  32. Jähnig, S. C., A. W. Lorenz, D. Hering, C. Antons, A. Sundermann, E. Jedicke & P. Haase, 2011. River restoration success: a question of perception. Ecological Applications 21: 2007–2015.CrossRefPubMedGoogle Scholar
  33. Kohut, L., 2014. Evaluation of ecosystem services provided by restored and unrestored part of river Beczva, Czech Republic. Internal Report, Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno.Google Scholar
  34. Lorenz, A. W. & C. K. Feld, 2013. Upstream river morphology and riparian land use overrule local restoration effects on ecological status assessment. Hydrobiologia 704: 489–501.CrossRefGoogle Scholar
  35. Martin-Lopez, B., E. Gomez-Baggethun, M. Garcia-Llorente & C. Montes, 2014. Trade-offs across value-domains in ecosystem services assessment. Ecological Indicators 37: 220–228.CrossRefGoogle Scholar
  36. Millennium Ecosystem Assessment (MEA), 2005. Ecosystems and Human Well-being, Summary for Decision Makers. Island Press, Washington.Google Scholar
  37. Morandi, B., H. Piegay, N. Lamouroux & L. Vaudor, 2014. How is success or failure in river restoration projects evaluated? Feedback from French restoration projects. Journal of Environmental Management 137: 178–188.CrossRefPubMedGoogle Scholar
  38. Muhar, S., K. Januschke, J. Kail, M. Poppe, D. Hering, A. D. Buijse, this issue. Evaluating good-practice cases for river restoration across Europe: context, methodological framework, selected results and recommendations. Hydrobiologia.Google Scholar
  39. Murray, B., A. Jenkins, R. Kramer, S. P. Faulkner, 2009. Valuing ecosystem services from wetlands restoration in the Mississippi alluvial valley. Nicholas Institute reports 09-02, Duke University, Durham.Google Scholar
  40. Nabuurs, G. J. & M. Schelhaas, 2002. Carbon profiles of typical forest types across Europe assessed with CO2FIX. Ecological Indicators 1: 213–223.CrossRefGoogle Scholar
  41. Nelson, E., G. Mendoza, J. Regetz, S. Polasky, H. Tallis, D. R. Cameron, K. M. Chan, G. C. Daily, J. Goldstein, P. M. Kareiva, E. Lonsdorf, R. Naidoo, T. H. Ricketts & M. R. Shaw, 2009. Modelling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment 7: 4–11.CrossRefGoogle Scholar
  42. Olde Venterink, H., F. Wiegman, G. E. M. Van der Lee & J. E. Vermaat, 2003. Role of active floodplains for nutrient retention in the river Rhine. Journal of Environmental Quality 32: 1430–1435.CrossRefPubMedGoogle Scholar
  43. Olde Venterink, H., J. E. Vermaat, M. Pronk, F. Wiegman, G. E. M. Van der Lee, M. W. Van den Hoorn, L. W. G. Higler & J. T. A. Verhoeven, 2006. Importance of sedimentation and denitrification for plant productivity and nutrient retention in various floodplain wetlands. Applied Vegetation Science 9: 163–174.CrossRefGoogle Scholar
  44. Pedersen, M. L., N. Friberg, J. Skriver, A. Baattrup-Pedersen & S. E. Larsen, 2007. Restoration of Skjern river and its valley – Short-term effects on river habitats, macrophytes and macro invertebrates. Ecological Engineering 30: 145–156.CrossRefGoogle Scholar
  45. Plug, M. C., 2014. Uncovering the pitfalls and quantifying the merits of river restoration: a case study on the Finnish Vääräjoki. MSc Thesis, Earth Sciences and Economics, VU University, Amsterdam.Google Scholar
  46. Skøien, J. O., G. Blöschl & A. W. Western, 2003. Characteristic space scales and timescales in hydrology. Water Resources Research 39: 1304.CrossRefGoogle Scholar
  47. Střeleček, F., J. Lososová & R. Zdeněk, 2011. Farmland rent in the European Union. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 59: 309–318.Google Scholar
  48. Turner, R. K., J. C. J. M. Van den Bergh, T. Soderqvist, A. Barendregt, J. Van der Straaten, E. Maltby & E. C. Van Ierland, 2000. Ecological-economic analysis of wetlands: scientific integration for management and policy. Ecological Economics 35: 7–23.CrossRefGoogle Scholar
  49. Tylec, L., 2013. An assessment of the societal benefits of the Narew river restoration versus the restoration costs using the ecosystem services approach. MSc Thesis Civil and Environmental Engineering, Warsaw University of Life Sciences, Warsaw.Google Scholar
  50. Underwood, A. J., 1996. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  51. Van Teeffelen, A., L. Miller, J. Van Minnen, J. E. Vermaat & M. Cabeza, 2014. How climate proof is the European Union’s biodiversity policy? Regional Environmental Change. doi: 10.1007/s10113-014-0647-3.Google Scholar
  52. Vermaat, J. E., E. Ansink, M. Catalinas Perez, A. Wagtendonk, R. Brouwer, 2013. Valuing the ecosystem services provided by European river corridors – an analytical framework. Report D2.3 of the FP7 project REFORM. http://www.reformrivers.eu/deliverables/d2-3.
  53. Von Arnold, K., M. Nilsson, B. Hanell, P. Weslien & L. Klemendtsson, 2005. Fluxes of CO2, CH4 and N20 from drained organic soils in deciduous forests. Soil Biology and Biochemistry 37: 1059–1071.CrossRefGoogle Scholar
  54. Wallace, K. J., 2007. Classification of ecosystem services: problems and solutions. Biological Conservation 139: 235–246.CrossRefGoogle Scholar
  55. Watson, R. & S. Albon (eds), 2011. The UK National Ecosystem Assessment: Synthesis of the Key Findings. UNEP-WCMC, Cambridge.Google Scholar
  56. Weber, J. L., 2011. An experimental framework for ecosystem capital accounting in Europe. EEQA technical Report 13/2011. EEA Copenhagen.Google Scholar
  57. Westmann, W. E., 1977. How much are nature’s services worth? Measuring the social benefits of ecosystem functioning is both controversial and illuminating. Science 197: 960–964.CrossRefGoogle Scholar
  58. Zedler, J. B. & S. Kercher, 2005. Wetland resources: status, trends, ecosystem services and restorability. Annual Review of Environment and Resources 30: 39–74.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jan E. Vermaat
    • 1
    • 2
  • Alfred J. Wagtendonk
    • 3
  • Roy Brouwer
    • 3
  • Oleg Sheremet
    • 3
  • Erik Ansink
    • 3
    • 4
  • Tim Brockhoff
    • 3
  • Maarten Plug
    • 2
    • 5
  • Seppo Hellsten
    • 5
  • Jukka Aroviita
    • 5
  • Luiza Tylec
    • 6
  • Marek Giełczewski
    • 6
  • Lukas Kohut
    • 7
  • Karel Brabec
    • 7
  • Jantine Haverkamp
    • 2
    • 8
  • Michaela Poppe
    • 8
  • Kerstin Böck
    • 8
  • Matthijs Coerssen
    • 2
    • 9
  • Joel Segersten
    • 9
  • Daniel Hering
    • 10
  1. 1.Department of Environmental SciencesNorway’s University of Life SciencesÅsNorway
  2. 2.Section Earth Sciences and Economics, Faculty of Earth and Life SciencesVU UniversityAmsterdamThe Netherlands
  3. 3.Institute for Environmental StudiesVU UniversityAmsterdamThe Netherlands
  4. 4.Department of Economic and Social HistoryUtrecht UniversityUtrechtThe Netherlands
  5. 5.Monitoring and Assessment Unit, Freshwater Centre, Finnish Environment Institute (SYKE)University of OuluOuluFinland
  6. 6.Division of Hydrology and Water ResourcesWarsaw University of Life SciencesWarsawPoland
  7. 7.Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX)Masaryk UniversityBrnoCzech Republic
  8. 8.Institute of Hydrobiology and Aquatic Ecosystem ManagementUniversity of Natural Resources and Life Sciences Vienna (BOKU)ViennaAustria
  9. 9.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural Sciences (SLU)UppsalaSweden
  10. 10.Department of Aquatic EcologyUniversity of Duisburg-EssenEssenGermany

Personalised recommendations