, Volume 766, Issue 1, pp 275–291 | Cite as

Terrestrial runoff boosts phytoplankton in a Mediterranean coastal lagoon, but these effects do not propagate to higher trophic levels

  • A. LiessEmail author
  • O. Rowe
  • S. N. Francoeur
  • J. Guo
  • K. Lange
  • A. Schröder
  • B. Reichstein
  • R. Lefèbure
  • A. Deininger
  • P. Mathisen
  • C. L. Faithfull
Primary Research Paper


Heavy rainfall events causing significant terrestrial runoff into coastal marine ecosystems are predicted to become more frequent with climate change in the Mediterranean. To simulate the effects of soil runoff on the pelagic food web of an oligotrophic Mediterranean coastal lagoon, we crossed soil extract addition (increasing nutrient availability and turbidity) and fish presence in a full factorial design to coastal mesocosms containing a natural pelagic community. Soil extract addition increased both bacteria and phytoplankton biomass. Diatoms however profited most from soil extract addition, especially in the absence of fish. In contrast zooplankton and fish did not profit from soil extract addition. Furthermore, our data indicate that nutrients (instead of light or carbon) limited basal production. Presumed changes in carbon availability are relatively unimportant to primary and secondary production in strongly nutrient limited systems like the Thau Lagoon. We conclude that in shallow Mediterranean coastal ecosystems, heavy rainfall events causing soil runoff will (1) increase the relative abundance of phytoplankton in relation to bacteria and zooplankton, especially in the absence of fish (2) not lead to higher biomass of zooplankton and fish, possibly due to the brevity of the phytoplankton bloom and the slow biomass response of higher trophic levels.


Bacteria Dissolved organic carbon (DOC) Mesocosm experiment Phytoplankton Nutrient subsidy Terrestrial subsidy 



We thank G. Thomsson, T. Bayer, and W. Uszko for help in field and laboratory. B. Mostajir, R. Pete, F. Vidussi, E. Le Floc’h, S. Mas and T. Dinet at the MEDIMEER mesocosm facility provided technical support. Thanks to A.P. Rowe for language editing. This research received funding from the European Union Seventh Framework Program (FP7/2007–2013) under Grant agreement n° 228224, MESOAQUA and through a grant by the Oscar and Lili Lamms Minnes Stiftelse as well as through a Young Researchers Award to AL.


  1. Almeda, R., A. M. Messmer, N. Sampedro & L. A. Gosselin, 2011. Feeding rates and abundance of marine invertebrate planktonic larvae under harmful algal bloom conditions off Vancouver island. Harmful Algae 10: 194–206.CrossRefGoogle Scholar
  2. APHA, 1998. Standard methods for the examination of water and waste water. American Public Health Association, Washington D.C.Google Scholar
  3. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyerreil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 19: 257–263.CrossRefGoogle Scholar
  4. Berglund, J., U. Müren, U. Båmstedt & A. Andersson, 2007. Efficiency of a phytoplankton-based and a bacteria-based food web in a pelagic marine system. Limnology and Oceanography 52: 121–131.CrossRefGoogle Scholar
  5. Blomqvist, P., M. Jansson, S. Drakare, A. K. Bergström & L. Brydsten, 2001. Effects of additions of DOC on pelagic biota in a clearwater system: results from a whole lake experiment in northern Sweden. Microbial Ecology 42: 383–394.PubMedCrossRefGoogle Scholar
  6. Bryhn, A. C., H. Ragnarsson Stabo & J. Olsson, 2013. Modelling the biomass of functional groups of fish in an archipelagobay of the Baltic Sea. Ecological Modelling 269: 86–97.CrossRefGoogle Scholar
  7. Calbert, A., 2008. The trophic role of microzooplankton in marine systems. ICES Journal of Marine Science 65: 325–331.CrossRefGoogle Scholar
  8. Carlotti, F., D. Bonnet & C. Halsband-Lenk, 2007. Development and growth rates of Centropages typicus. Progress in Oceanography 72: 164–194.CrossRefGoogle Scholar
  9. Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–186.CrossRefGoogle Scholar
  10. Carrasco, N. K., R. Perssinotto & S. Jones, 2013. Turbidity effects on feeding and mortality of the copepod Acartiella natalensis (Connell Grindley, 1974) In the St Lucia Estuary, South Africa. Journal of Experimental Marine Biology and Ecology 446: 45–51.CrossRefGoogle Scholar
  11. Demers, S., S. Roy, R. Gagnon & C. Vignault, 1991. Rapid light-induced-changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrinum axcavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae) – a photo-protection mechanism. Marine Ecology Progress Series. 76: 185–193.CrossRefGoogle Scholar
  12. Dickman, E. M., J. M. Newell, M. J. Gonzáles & M. J. Vanni, 2008. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proceedings of the National Academy of Science 105: 18408–18412.CrossRefGoogle Scholar
  13. Diehl, S., S. Berger & R. Wöhrl, 2005. Flexible nutrient stoichiometry mediates environmental influences on phytoplankton and its abiotic resources. Ecology 86: 2931–2945.CrossRefGoogle Scholar
  14. Estes, J. A., J. Terborgh, J. S. Brashares, M. E. Power, J. Berger, W. J. Bond, S. R. Carpenter, T. E. Essington, R. D. Holt, J. B. C. Jackson, R. J. Marquis, L. Oksanen, T. Oksanen, R. T. Paine, E. K. Pikitch, W. J. Ripple, S. A. Sandin, M. Scheffer, T. W. Schoener, J. B. Shurin, A. R. E. Sinclair, M. E. Soule, R. Virtanen & D. A. Wardle, 2011. Trophic downgrading of planet earth. Science 333: 301–306.PubMedCrossRefGoogle Scholar
  15. Faithfull, C. L., M. Huss, A. K. Bergström & T. Vrede, 2011. Bottom-up carbon subsidies and top-down predation pressure interact to affect aquatic food web structure. Oikos 120: 311–320.CrossRefGoogle Scholar
  16. Faithfull, C., M. Huss, T. Vrede, J. Karlsson & A. K. Bergström, 2012. Transfer of bacterial production based on labile carbon to higher trophic levels in an oligotrophic pelagic system. Canadian Journal of Fisheries and Aquatic Sciences 69: 85–93.CrossRefGoogle Scholar
  17. Falkowski, P. G. & J. A. Raven, 2007. Aquatic photosynthesis, 2nd ed. Princeton University Press, Princeton.Google Scholar
  18. Fouilland, E., A. Trottet, C. Bancon-Montigny, M. Bouvy, E. Le Floc’h, J.-L. Gonzalez, E. Hatey, S. Mas, B. Mostajir, J. Nouguier, D. Pecqueur, E. Rochelle-Newall, C. Rodier, C. Roques, C. Salles, M.-G. Tournoud & F. Vidussi, 2012. Impact of a river flash flood on microbial carbon and nitrogen production in a Mediterranean Lagoon (Thau Lagoon, France). Estuarine, Coastal and Shelf Science 113: 192–204.CrossRefGoogle Scholar
  19. Francoeur, S. N., S. T. Rier & S. B. Whorley, 2013. Methods for sampling and analyzing wetland algae. In: T. Anderson, T. et al (ed.), Wetland Techniques. Springer, pp 1-58.Google Scholar
  20. Goss, R. & T. Jakob, 2010. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynthesis Research 106: 103–122.PubMedCrossRefGoogle Scholar
  21. Guadayol, O., F. Peters, C. Marrasé, J. M. Gasol, C. Roldán, E. Berdalet, R. Massana & A. Sabata, 2009. Episodic meteorological and nutrient-load events as drivers of coastal planktonic ecosystem dynamics: a time-series analysis. Marine Ecology-Progress Series 381: 139–155.CrossRefGoogle Scholar
  22. Hellebust, J. A. & J. Lewin, 1977. Heterotrophic nutrition. In Werner, D. (ed.), The Biology of Diatoms. Blackwell Scientific Publications, Oxford: 169–197.Google Scholar
  23. Horner, R. A., 2002. A Taxonomic Guide to Some Common Marine Phytoplankton. Biopress Limited, Bristol.Google Scholar
  24. Jackson, J. B. C., M. X. Kirby, W. H. Berger, K. A. Bjorndal, L. W. Botsford, B. J. Bourque, R. H. Bradbury, R. Cooke, J. Erlandson, J. A. Estes, T. P. Hughes, S. Kidwell, C. B. Lange, H. S. Lenihan, J. M. Pandolfi, C. H. Peterson, R. S. Steneck, M. J. Tegner & R. R. Warner, 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293: 629–638.PubMedCrossRefGoogle Scholar
  25. Jansson, M., 1998. Nutrient limitation and bacteria-phytoplankton interactions in humic lakes. In Hessen, D. O. & L. Tranvik (eds), Aquatic Humic Substances. Springer, Ecology and Biochemistry: 177–194.CrossRefGoogle Scholar
  26. Jansson, M., L. Persson, A. D. De Roos, R. I. Jones & L. J. Tranvik, 2007. Terrestial carbon and intraspecific size-variation shape lake ecosystems. Trends in Ecology and Evolution 22: 316–322.PubMedCrossRefGoogle Scholar
  27. Jones, R. I., 1992. The influence of humic substances on lacustrine planktonic food-chains. Hydrobiologia 229: 73–91.CrossRefGoogle Scholar
  28. Kang, H.-K., 2012. Effects of suspended sediments on reproductive responses of Paracalanus sp. (Copepoda: Calanoida) in the laboratory. Journal of Plankton Research 34: 626–635.CrossRefGoogle Scholar
  29. Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  30. Koichi, A., 2001. Temporal variability and production of Euterpina acutifrons (Copepoda:Harpacticoida) in the Canan´eia Lagoon estuarine system, São Paulo, Brazil. Hydrobiologia 453: 177–187.Google Scholar
  31. Kyselý, J., S. Begueria, R. Beranova, L. Gaal & J. I. Lopez-Moreno, 2012. Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean. Global and Planetary Change 98–99: 63–72.CrossRefGoogle Scholar
  32. Lefèbure, R., R. Degerman, A. Andersson, S. Larsson, L.-O. Eriksson, U. Båmstedt & P. Byström, 2013. Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production. Global Change Biology 19: 1358–1372.PubMedCrossRefGoogle Scholar
  33. Liess, A., M. Quevedo, J. Olsson, T. Vrede, P. Eklöv & H. Hillebrand, 2006. Food web complexity affects stoichiometric and trophic interactions. Oikos 114: 117–125.CrossRefGoogle Scholar
  34. Liess, A., C. Faithfull, B. Reichstein, O. Rowe, J. Guo, R. Pete, G. Thomsson, W. Uszko & S. N. Francoeur, 2015. Terrestrial runoff may reduce microbenthic net community productivity by increasing turbidity: a Mediterranean coastal lagoon mesocosm experiment. Hydrobiologia. doi: 10.1007/s10750-051-2207-3.Google Scholar
  35. Lindley, J. A., 1998. Dry weights, carbon and nitrogen content of decapod larvae from the plankton. Journal of the Marine Biological Association of the UNITED Kingdom 78: 341–344.CrossRefGoogle Scholar
  36. Milly, P. C. D., R. T. Wetherald, K. A. Dunne & T. L. Delworth, 2002. Increasing risk of great floods in a changing climate. Nature 415: 514–517.PubMedCrossRefGoogle Scholar
  37. Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protest plankton. Limnology and Oceanography 45: 569–579.CrossRefGoogle Scholar
  38. Pankow, H., 1990. Ostsee-Algenflora. Gustav Fischer Verlag, Jena.Google Scholar
  39. Pecqueur, D., F. Vidussi, E. Fouilland, E. Le Floc’h, S. Mas, C. Roques, C. Salles, M. G. Tournoud & B. Mostajir, 2011. Dynamics of microbial planktonic food web components during a river flash flood in a Mediterranean coastal lagoon. Hydrobiologia 673: 13–27.CrossRefGoogle Scholar
  40. Picot, B., G. Pena, C. Casellas, D. Bondon & J. Bontoux, 1990. Interpretation of the seasonal variations of nutrients in a Mediterranean lagoon: Étang de Thau. Interpretation of the seasonal variations of nutrients in a Mediterranean lagoon: Étang de Thau. Hydrobiologia 207: 105–114.CrossRefGoogle Scholar
  41. Pijanowski, B. S., 1973. Salinity corrections for dissolved oxygen measurements. Environmental Science and Technology 7: 957–958.CrossRefGoogle Scholar
  42. Postel, L., H. Simon & V. Guiard, 2007. Individual-specific carbon mass determination of zooplankton taxa of the open Baltic Sea basing on length/biomass relationships and conversion factors. Final report (in German). Leibniz Institute of Baltic Sea Research.Google Scholar
  43. Sanchez, E., C. Gallardo, M. A. Gaertner, A. Arribas & M. Castro, 2004. Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global and Planetary Change 44: 163–180.CrossRefGoogle Scholar
  44. Sandberg, J., A. Andersson, S. Johansson & J. Wikner, 2004. Pelagic food web structure and carbon budget in the northern Baltic Sea: potential importance of terrigenous carbon. Marine Ecology-Progress Series 268: 13–29.CrossRefGoogle Scholar
  45. Sommer, U., H. Stibor, A. Katechakis, F. Sommer & T. Hansen, 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484: 11–20.CrossRefGoogle Scholar
  46. Spyropoulou, A., S. Spatharis, G. Papantoniou & G. Tsirtsis, 2013. Potential response to climate change of a semi-arid coastal ecosystem in eastern Mediterranean. Hydrobiologia 705: 87–99.CrossRefGoogle Scholar
  47. Stoecker, D. K., M. D. Johnson, C. de Vargas & F. Not, 2009. Acquired phototrophy in aquatic protists. Aquatic Microbial Ecology 57: 279–310.CrossRefGoogle Scholar
  48. Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microbial Ecology 16: 311–322.PubMedCrossRefGoogle Scholar
  49. Uye, S., 1982. Length- Weight relationships of important zooplankton from the inland Sea of Japan. Journal of the Oceanographical Society of Japan 38: 149–158.CrossRefGoogle Scholar
  50. Vadstein, O., 2000. Heterotrophic, planktonic bacteria and cycling of phosphorus – phosphorus requirements, competitive ability and food web interactions. Advances in Microbial Ecology 16: 115–167.CrossRefGoogle Scholar
  51. Vidussi, F., B. Mostajir, E. Fouilland, E. Le Floc’h, J. Nougu, C. Roques, P. Got, D. Thibault-Botha & M. Troussellier, 2011. Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnology and Oceanography 56: 206–218.CrossRefGoogle Scholar
  52. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Liess
    • 1
    • 2
    Email author
  • O. Rowe
    • 1
    • 3
  • S. N. Francoeur
    • 4
  • J. Guo
    • 1
  • K. Lange
    • 5
    • 6
  • A. Schröder
    • 7
    • 8
  • B. Reichstein
    • 1
  • R. Lefèbure
    • 1
    • 9
  • A. Deininger
    • 1
  • P. Mathisen
    • 1
  • C. L. Faithfull
    • 1
  1. 1.Department of Ecology and Environmental SciencesUmeå UniversitetUmeåSweden
  2. 2.Laboratoire Ecosystèmes Marins CôtiersUMR5119 CNRS, Université Montpellier2, IRD, IFREMERParisFrance
  3. 3.Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1University of HelsinkiHelsinkiFinland
  4. 4.Department of BiologyEastern Michigan UniversityYpsilantiUSA
  5. 5.Department of ZoologyUniversity of OtagoDunedinNew Zealand
  6. 6.Department of Fish Ecology and EvolutionEAWAGKastanienbaumSwitzerland
  7. 7.Faculty of Biological SciencesUniversity of LeedsLeedsUK
  8. 8.Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Biology and Ecology of FishesBerlinGermany
  9. 9.Marine Stewardship Council, Marine HouseLondonUK

Personalised recommendations