Hydrobiologia

, Volume 766, Issue 1, pp 215–223 | Cite as

Response of Vallisneria spinulosa (Hydrocharitaceae) to contrasting nitrogen loadings in controlled lake mesocosms

  • Suting Zhao
  • Liyan Yin
  • Fengyi Chang
  • Saara Olsen
  • Martin Søndergaard
  • Erik Jeppesen
  • Wei Li
Primary Research Paper

Abstract

The role of nitrogen (N) in the shift from a macrophyte-dominated state to a phytoplankton-dominated one at high N concentrations in shallow lakes is still debated. To elucidate possible toxic and ecological effects of high N on macrophyte growth, we conducted a short-term (40 day) study of a eutrophication-tolerant macrophyte, Vallisneria spinulosa (Hydrocharitaceae), incubated in pots in a mesocosm system subjected to different N concentrations (1, 3, and 5 mg l−1). Plant leaf and root length as well as growth rate decreased significantly with increased N concentrations, but most N- and P-related physiological parameters, including the soluble protein content, nitrate reductase activity, acid phosphatase activity, and tissue N and P contents, did not differ significantly among the N treatments. Only the alkaline phosphatase activity differed, being lower at high nitrogen loading, likely due to P limitation. Epiphyton and phytoplankton biomasses increased significantly with increasing N loading. Our results including a large number of physiological tests of the macrophytes, therefore, provide supporting evidence that the loss of submerged macrophytes, like V. spinulosa, seen at high N loading in shallow lakes, can be attributed to competition with phytoplankton and epiphyton rather than to toxic effects.

Keywords

Epiphyton Nitrogen Physiology Phytoplankton Submerged macrophyte 

Supplementary material

10750_2015_2456_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. Barker, T., K. Hatton, M. O’Connor, L. Connor & B. Moss, 2008. Effects of nitrate load on submerged plant biomass and species richness: results of a mesocosm experiment. Fundamental and Applied Limnology 173: 89–100.CrossRefGoogle Scholar
  2. Best, E. P. H., 1980. Effects of nitrogen on the growth and nitrogenous compounds of Ceratophyllum-demersum. Aquatic Botany 8: 197–206.CrossRefGoogle Scholar
  3. Boedeltje, G., A. J. P. Smolders & J. G. M. Roelofs, 2005. Combined effects of water column nitrate enrichment, sediment type and irradiance on growth and foliar nutrient concentrations of Potamogeton alpinus. Freshwater Biology 50: 1537–1547.CrossRefGoogle Scholar
  4. Cao, T., L. Y. Ni & P. Xie, 2004. Acute biochemical responses of a submersed macrophyte, Potamogeton crispus L., to high ammonium in an aquarium experiment. Journal of Freshwater Ecology 19: 279–284.CrossRefGoogle Scholar
  5. Cao, T., P. Xie, L. Y. Ni, A. P. Wu, M. Zhang, S. K. Wu & A. J. P. Smolders, 2007. The role of NH4-N toxicity in the decline of the submersed macrophyte Vallisneria natans in lakes of the Yangtze River basin, China. Marine and Freshwater Research 58: 581–587.CrossRefGoogle Scholar
  6. Cao, T., P. Xie, Z. Q. Li, L. Y. Ni, M. Zhang & J. Xu, 2009a. Physiological stress of high NH4-N concentration in water column on the submersed macrophyte Vallisneria Natans L. Bulletin of Environmental Contamination and Toxicology 82: 296–299.PubMedCrossRefGoogle Scholar
  7. Cao, T., P. Xie, L. Y. Ni, M. Zhang & J. Xu, 2009b. Carbon and nitrogen metabolism of an eutrophication tolerative macrophyte, Potamogeton crispus, under NH4-N stress and low light availability. Environmental and Experimental Botany 66: 74–78.CrossRefGoogle Scholar
  8. Cao, T., L. Ni, P. Xie, J. Xu & M. Zhang, 2011. Effects of moderate ammonium enrichment on three submersed macrophytes under contrasting light availability. Freshwater Biology 56: 1620–1629.CrossRefGoogle Scholar
  9. Cao, Y., W. Li & E. Jeppesen, 2014. The response of two submerged macrophytes and periphyton to elevated temperatures in the presence and absence of snails: a microcosm approach. Hydrobiologia 738: 49–59.CrossRefGoogle Scholar
  10. Cedergreen, N. & T. V. Madsen, 2003. Nitrate reductase activity in roots and shoots of aquatic macrophytes. Aquatic Botany 76: 203–212.CrossRefGoogle Scholar
  11. Gonzalez Sagrario, M. A., E. Jeppesen, J. Goma, M. Sondergaard, J. P. Jensen, T. Lauridsen & F. Landkildehus, 2005. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshwater Biology 50: 27–41.CrossRefGoogle Scholar
  12. Havens, K. E., T. L. East, S. J. Hwang, A. J. Rodusky, B. Sharfstein & A. D. Steinman, 1999a. Algal responses to experimental nutrient addition in the littoral community of a subtropical lake. Freshwater Biology 42: 329–344.CrossRefGoogle Scholar
  13. Havens, K. E., T. L. East, A. J. Rodusky & B. Sharfstein, 1999b. Littoral periphyton responses to nitrogen and phosphorus: an experimental study in a subtropical lake. Aquatic Botany 63: 267–290.CrossRefGoogle Scholar
  14. Jeppesen, E., M. Sondergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007. Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia 584: 239–252.CrossRefGoogle Scholar
  15. Jones, J. I., J. O. Young, J. W. Eaton & B. Moss, 2002. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. Journal of Ecology 90: 12–24.CrossRefGoogle Scholar
  16. Li, H. S., Q. Sun, S. Zhao & W. Zhang, 2004. Plant Physiology Biochemistry Principle and Experimental Technique. Higher Education Press, Beijing. (in Chinese).Google Scholar
  17. Li, W., Z. Zhang & E. Jeppesen, 2008. The response of Vallisneria spinulosa (Hydrocharitaceae) to different loadings of ammonia and nitrate at moderate phosphorus concentration: a mesocosm approach. Freshwater Biology 53: 2321–2330.CrossRefGoogle Scholar
  18. Morales, L., N. Gutierrez, V. Maya, C. Parra, E. Martinez-Barajas & P. Coello, 2012. Purification and characterization of an alkaline phosphatase induced by phosphorus starvation in common bean (Phaseolus vulgaris L.) roots. Journal of the Mexican Chemical Society 56: 80–84.Google Scholar
  19. Moss, B., E. Jeppesen, M. Sondergaard, T. L. Lauridsen & Z. W. Liu, 2013. Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy? Hydrobiologia 710: 3–21.CrossRefGoogle Scholar
  20. Nimptsch, J. & S. Pflugmacher, 2007. Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense. Chemosphere 66: 708–714.PubMedCrossRefGoogle Scholar
  21. Olsen, S., F. Chan, W. Li, S. Zhao, M. Sondergaard & E. Jeppesen, 2015. Strong impact of nitrogen loading on submerged macrophytes and algae: a long-term mesocosm experiment in a shallow Chinese lake. Freshwater Biology 60: 1525–1536.CrossRefGoogle Scholar
  22. Özkan, K., E. Jeppesen, L. S. Johansson & M. Beklioglu, 2010. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment. Freshwater Biology 55: 463–475.CrossRefGoogle Scholar
  23. Parida, A. K. & A. B. Das, 2004. Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. Journal of Plant Physiology 161: 921–928.PubMedCrossRefGoogle Scholar
  24. Santamaría, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica-International Journal of Ecology 23: 137–154.CrossRefGoogle Scholar
  25. Saunkaew, P., P. Wangpakapattanawong & A. Jampeetong, 2011. Growth, morphology, ammonium uptake and nutrient allocation of Myriophyllum brasiliense Cambess. under high NH4-N concentrations. Ecotoxicology 20: 2011–2018.PubMedCrossRefGoogle Scholar
  26. Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.Google Scholar
  27. Sepac (State Environmental Protection Administration of China), 2002. Monitoring and analytical methods of water and wastewater. China Envrionmental Science Press, Beijing. (in Chinese).Google Scholar
  28. Smart, M. M., R. G. Rada & G. N. Donnermeyer, 1983. Determination of total nitrogen in sediments and plants using persulfate digestion – an evaluation and comparison with the kjeldahl procedure. Water Research 17: 1207–1211.CrossRefGoogle Scholar
  29. Smolders, A. J. P., C. denHartog, C. B. L. vanGestel & J. G. M. Roelofs, 1996. The effects of ammonium on growth, accumulation of free amino acids and nutritional status of young phosphorus deficient Stratiotes aloides plants. Aquatic Botany 53: 85–96.CrossRefGoogle Scholar
  30. Wu, S. K., P. Xie, G. D. Liang, S. B. Wang & X. M. Liang, 2006a. Relationships between microcystins and environmental parameters in 30 subtropical shallow lakes along the Yangtze River, China. Freshwater Biology 51: 2309–2319.CrossRefGoogle Scholar
  31. Wu, S. K., P. Xie, S. B. Wang & Q. Zhou, 2006b. Changes in the patterns of inorganic nitrogen and TN/TP ratio and the associated mechanism of biological regulation in the shallow lakes of the middle and lower reaches of the Yangtze River. Science in China Series D-Earth Sciences 49: 126–134.CrossRefGoogle Scholar
  32. Zhang, M., J. Xu & P. Xie, 2008. Nitrogen dynamics in large shallow eutrophic Lake Chaohu, China. Environmental Geology 55: 1–8.CrossRefGoogle Scholar
  33. Zhang, N., H. J. Li, E. Jeppesen & W. Li, 2013. Influence of substrate type on periphyton biomass and nutrient state at contrasting high nutrient levels in a subtropical shallow lake. Hydrobiologia 710: 129–141.CrossRefGoogle Scholar
  34. Zhang, Y. Z., L. Y. Yin, H. S. Jiang, W. Li, B. Gontero & S. C. Maberly, 2014. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae). Photosynthesis Research 121: 285–297.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratory of Aquatic Plant Biology, Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
  2. 2.Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesHainan UniversityHaikouChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Department of BioscienceAarhus UniversitySilkeborgDenmark
  5. 5.Sino-Danish Center for Education and Research (SDC)University of Chinese Academy of SciencesBeijingChina
  6. 6.Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical GardenChinese Academy of SciencesWuhanChina

Personalised recommendations