, Volume 761, Issue 1, pp 315–333 | Cite as

Functional characterisation of the haemoglobins of the migratory notothenioid fish Dissostichus eleginoides

  • Daniela Coppola
  • Daniela Giordano
  • Stefania Abbruzzetti
  • Francesco Marchesani
  • Marco Balestrieri
  • Guido di Prisco
  • Cristiano Viappiani
  • Stefano BrunoEmail author
  • Cinzia VerdeEmail author


This study addresses the primary structure, the oxygen-binding properties and the CO-rebinding kinetics of the haemoglobins of the Patagonian toothfish Dissostichus eleginoides. D. eleginoides belongs to the family Nototheniidae, the most diversified of the suborder Notothenioidei, mostly exhibiting an Antarctic distribution. Some of its features are typical of Antarctic species, some are not. For instance, D. eleginoides appears not to have functional antifreeze glycoproteins (consistent with its non-Antarctic distribution). In contrast, it has a major and a minor haemoglobin (similar to many Antarctic notothenioids), and their very low oxygen affinity does not follow the trend of other non-Antarctic notothenioids and appears typical of cold-adapted species. Moreover, the amino-acid sequence reveals high identity with the globins of Antarctic notothenioids, arguing in favour of a common origin within notothenioids, and indicates that the primary structure of the major and minor haemoglobins has undergone modifications only to a limited extent. The ligand-rebinding kinetics of the major haemoglobin of D. eleginoides indicate a strong stabilisation of the quaternary T state at lower pH values.


Adaptation Notothenioidei Haemoglobin Regulation Structure/function 



We thank the captain, crew and personnel of Raytheon Polar Services aboard the RVIB Nathaniel B. Palmer for their excellent assistance during the ICEFISH cruise (2004) to collect fish specimens, supported by the National Science Foundation grant OPP 0132032 to H. William Detrich (Northeastern University). We are grateful to two anonymous reviewers, whose advice has significantly improved the manuscript.


This study has been supported by the Italian National Programme for Antarctic Research (PNRA) and Ministero degli Affari Esteri, Direzione generale per la promozione del sistema Paese (Progetti di Grande Rilevanza, Italia-Argentina 2011–2013). The project is in the framework of the SCAR programme “Antarctic Thresholds—Ecosystem Resilience and Adaptation” (AnT-ERA). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

The manuscript complies the Ethical rules of the journal. This study did not involve research on humans. Fish have been collected as part of faunal surveys. The protocols have undergone an ethical review process according to the international animal welfare laws, guidelines and policies. The amino-acid sequence data are reported in Swiss-Prot Protein Database under the accession numbers C0HJT6 (β1); C0HJT7(β2); C0HJT8(α1).

Supplementary material

10750_2015_2439_MOESM1_ESM.doc (540 kb)
Supplementary material 1 (DOC 540 kb)


  1. Abbruzzetti, S., S. Sottini, C. Viappiani & J. E. T. Corrie, 2005. Kinetics of proton release after flash photolysis of 1-(2-nitrophenyl)ethyl sulfate (caged sulfate) in aqueous solutions. Journal of the American Chemical Society 127: 9865–9874.CrossRefPubMedGoogle Scholar
  2. Abbruzzetti, S., S. Bruno, S. Faggiano, E. Grandi, A. Mozzarelli & C. Viappiani, 2006. Time-resolved methods in biophysics. 2. Monitoring haem proteins at work with nanosecond laser flash photolysis. Photochemical and Photobiological Sciences 5: 1109–1120.CrossRefPubMedGoogle Scholar
  3. Berenbrink, M., P. Koldkjar, O. Kepp & A. R. Cossins, 2005. Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307: 1752–1757.CrossRefPubMedGoogle Scholar
  4. Brittain, T., 2005. The Root effect in haemoglobins. Journal of Inorganic Biochemistry 99: 120–129.CrossRefPubMedGoogle Scholar
  5. Bruno, S., S. Faggiano, F. Spyrakis, A. Mozzarelli, E. Cacciatori, P. Dominici, E. Grandi, S. Abbruzzetti & C. Viappiani, 2007. Different roles of protein dynamics and ligand migration in non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. Gene 398: 224–233.CrossRefPubMedGoogle Scholar
  6. Camardella, L., C. Caruso, R. D’Avino, G. di Prisco, B. Rutigliano, M. Tamburrini, G. Fermi & M. F. Perutz, 1992. Hemoglobin of the Antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative. Journal of Molecular Biology 224: 449–460.CrossRefPubMedGoogle Scholar
  7. Cheng, C.-H. C., L. Chen, T. J. Near & Y. Jin, 2003. Functional antifreeze glycoprotein genes in temperate water New Zealand notothenioid fish infer an Antarctic evolutionary origin. Molecular Biology and Evolution 20: 1897–1908.CrossRefPubMedGoogle Scholar
  8. Clarke, A. & I. A. Johnston, 1996. Evolution and adaptive radiation of Antarctic fishes. Trends in Ecology and Evolution 11: 212–218.CrossRefPubMedGoogle Scholar
  9. Coppes, Z. L. & G. N. Somero, 2007. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species. Comparative Biochemistry and Physiology Part A: Molecular & integrative physiology 147: 799–807.CrossRefGoogle Scholar
  10. Coppola, D., D. Giordano, A. Vergara, L. Mazzarella, G. di Prisco, C. Verde & R. Russo, 2010. The hemoglobins of sub-Antarctic fishes of the suborder Notothenioidei. Polar Science 4: 295–308.CrossRefGoogle Scholar
  11. Coppola, D., S. Abbruzzetti, F. Nicoletti, A. Merlino, A. Gambacurta, D. Giordano, B. D. Howes, G. De Sanctis, L. Vitagliano, S. Bruno, G. di Prisco, L. Mazzarella, G. Smulevich, M. Coletta, C. Viappiani, A. Vergara & C. Verde, 2012. ATP regulation of the ligand-binding properties in temperate and cold-adapted haemoglobins. X-ray structure and ligand-binding kinetics in the sub-Antarctic fish Eleginops maclovinus. Molecular Biosystems 8: 3295–3304.CrossRefPubMedGoogle Scholar
  12. Cziko, P. A., A. L. DeVries, C. W. Evans & C.-H. C. Cheng, 2014. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. Proceedings of the National Academy of Sciences of the United States of America 111: 14583–14588.PubMedCentralCrossRefPubMedGoogle Scholar
  13. D’Avino, R. & G. di Prisco, 1988. Antarctic fish haemoglobin: an outline of the molecular structure and oxygen binding properties. I. Molecular structure. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 90: 579–584.CrossRefGoogle Scholar
  14. D’Avino, R. & G. di Prisco, 1989. Haemoglobin from the Antarctic fish Notothenia coriiceps neglecta. 1. Purification and characterisation. European Journal of Biochemistry/FEBS 179: 699–705.CrossRefPubMedGoogle Scholar
  15. DeVries, A. L. & C.-H. C. Cheng, 2005. Antifreeze proteins in polar fishes. In Farrell, A. P. & J. F. Steffensen (eds), Fish Physiology, Vol. 22. Academic Press, San Diego: 155–201.Google Scholar
  16. di Prisco, G. & M. Tamburrini, 1992. The hemoglobins of marine and freshwater fish: the search for correlation with physiological adaptation. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 102: 661–671.CrossRefGoogle Scholar
  17. di Prisco, G., J. T. Eastman, D. Giordano, E. Parisi & C. Verde, 2007. Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution. Gene 398: 143–155.CrossRefPubMedGoogle Scholar
  18. Eastman, J. T., 1988. Ocular morphology in Antarctic notothenioid fishes. Journal of Morphology 196: 283–306.CrossRefGoogle Scholar
  19. Eastman, J. T., 1993. Antarctic Fish Biology: Evolution in a Unique Environment. Academic Press, San Diego, CA.Google Scholar
  20. Eastman, J. T., 2005. The nature of the diversity of Antarctic fishes. Polar Biology 28: 94–107.CrossRefGoogle Scholar
  21. Eastman, J. T. & A. R. McCune, 2000. Fishes on the Antarctic continental shelf: evolution of a marine species flock? Journal of Fish Biology 57: 84–102.Google Scholar
  22. Fago, A., E. Forest & R. E. Weber, 2002. Hemoglobin and subunit multiplicity in the rainbow trout (Oncorhynchus mykiss) hemoglobin system. Fish Physiology and Biochemistry 24: 335–342.CrossRefGoogle Scholar
  23. Feuerlein, R. J. & R. E. Weber, 1994. Rapid and simultaneous measurement of anodic and cathodic haemoglobins and ATP and GTP concentrations in minute quantities of fish blood. Journal of Experimental Biology 189: 273–277.PubMedGoogle Scholar
  24. Giordano, D., L. Grassi, E. Parisi, L. Bargelloni, G. di Prisco & C. Verde, 2006. Embryonic β-globin in the non-Antarctic notothenioid fish Cottoperca gobio (Bovichtidae). Polar Biology 30: 75–82.CrossRefGoogle Scholar
  25. Giordano, D., L. Boechi, A. Vergara, M. A. Martí, U. Samuni, D. Dantsker, L. Grassi, D. A. Estrin, J. M. Friedman, L. Mazzarella, G. di Prisco & C. Verde, 2009. The hemoglobins of the sub-Antarctic fish Cottoperca gobio, a phyletically basal species-oxygen-binding equilibria, kinetics and molecular dynamics. FEBS Journal 276: 2266–2277.CrossRefPubMedGoogle Scholar
  26. Jones, C. M., A. Ansari, E. R. Henry, G. W. Christoph, J. Hofrichter & W. A. Eaton, 1992. Speed of intersubunit communication in proteins. Biochemistry 31: 6692–6702.CrossRefPubMedGoogle Scholar
  27. Laptikhovsky, V., A. Arkhipkin & P. Brickle, 2006. Distribution and reproduction of Patagonian toothfish Dissostichus eleginoides Smitt around the Falkland Islands. Journal of Fish Biology 68: 849–861.CrossRefGoogle Scholar
  28. Mazzarella, L., A. Vergara, L. Vitagliano, A. Merlino, G. Bonomi, S. Scala, C. Verde & G. di Prisco, 2006a. High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: the role of histidine residues in modulating the strength of the Root effect. Proteins: Structure Function, and Bioinformatics 65: 490–498.CrossRefGoogle Scholar
  29. Mazzarella, L., G. Bonomi, M. C. Lubrano, A. Merlino, A. Riccio, A. Vergara, L. Vitagliano, C. Verde & G. di Prisco, 2006b. Minimal structural requirements for Root effect: crystal structure of the cathodic haemoglobin isolated from the Antarctic fish Trematomus newnesi. Proteins: Structure Function, and Bioinformatics 62: 316–321.CrossRefGoogle Scholar
  30. Perutz, M. F., 1983. Species adaptation in a protein molecule. Molecular Biology and Evolution 1: 1–28.PubMedGoogle Scholar
  31. Ritchie, P. A., L. Bargelloni, A. Meyer, J. A. Taylor, J. A. Macdonald & M. Lambert, 1996. Mitochondrial phylogeny of trematomid fishes (Nototheniidae, Perciformes) and the evolution of Antarctic fish. Molecular Phylogenetics and Evolution 5: 383–390.CrossRefPubMedGoogle Scholar
  32. Ronda, L., S. Bruno, S. Faggiano, S. Bettati & A. Mozzarelli, 2008. Oxygen binding to heme proteins in solution, encapsulated in silica gels, and in the crystalline state. Methods in Enzymology 437: 311–328.CrossRefPubMedGoogle Scholar
  33. Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  34. Scher, H. D. & E. E. Martin, 2006. Timing and climatic consequences of the opening of Drake Passage. Science 312: 428–430.CrossRefPubMedGoogle Scholar
  35. Somero, G. N., 2012. The physiology of global change: linking patterns to mechanisms. Annual Review of Marine Science 4: 39–61.CrossRefPubMedGoogle Scholar
  36. Sottini, S., S. Abbruzzetti, F. Spyrakis, S. Bettati, L. Ronda, A. Mozzarelli & C. Viappiani, 2005. Geminate rebinding in R state hemoglobin: kinetic and computational evidence for multiple hydrophobic pockets. Journal of the American Chemical Society 127: 17427–17432.CrossRefPubMedGoogle Scholar
  37. Stam, W. T., J. J. Beintema, R. D’Avino, M. Tamburrini & G. di Prisco, 1997. Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei). Journal of Molecular Evolution 45: 437–445.CrossRefPubMedGoogle Scholar
  38. Tamburrini, M., A. Brancaccio, R. Ippoliti & G. di Prisco, 1992. The amino acid sequence and oxygen-binding properties of the single haemoglobin of the cold-adapted Antarctic teleost Gymnodraco acuticeps. Archives of Biochemistry and Biophysics 292: 295–302.CrossRefPubMedGoogle Scholar
  39. Tamburrini, M., R. D’Avino, A. Fago, V. Carratore, A. Kunzmann & G. di Prisco, 1996. The unique haemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost: structure and function of the three components. Journal of Biological Chemistry 271: 23780–23785.CrossRefPubMedGoogle Scholar
  40. Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Verde, C., V. Carratore, A. Riccio, M. Tamburrini, E. Parisi & G. di Prisco, 2002. The functionally distinct hemoglobins of the Arctic spotted wolfish Anarhichas minor. Journal of Biological Chemistry 277: 36312–36320.CrossRefPubMedGoogle Scholar
  43. Verde, C., B. D. Howes, M. C. De Rosa, L. Raiola, G. Smulevich, R. Williams, B. Giardina, E. Parisi & G. di Prisco, 2004. Structure and function of the Gondwanian hemoglobin of Pseudaphritis urvillii, a primitive notothenioid fish of temperate latitudes. Protein Science 13: 2766–2781.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Verde, C., M. Balestrieri, D. de Pascale, D. Pagnozzi, G. Lecointre & G. di Prisco, 2006a. The oxygen-transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of hemoglobin. Journal of Biological Chemistry 281: 22073–22084.CrossRefPubMedGoogle Scholar
  45. Verde, C., E. Parisi & G. di Prisco, 2006b. The evolution of hemoglobin of thermal adaptation in polar fish. Gene 385: 137–145.CrossRefPubMedGoogle Scholar
  46. Verde, C., M. Berenbrink & G. di Prisco, 2008a. Evolutionary physiology of oxygen secretion in the eye of fishes of the suborder Notothenioidei. In Bolognesi, M., G. di Prisco & C. Verde (eds), Dioxygen Binding and Sensing Proteins. Protein Reviews Series, vol. 9. Italia, Springer: 49–65.CrossRefGoogle Scholar
  47. Verde, C., A. Vergara, L. Mazzarella & G. di Prisco, 2008b. Hemoglobins of fishes living at polar latitudes: current knowledge on evolutionary and structural adaptation in a changing environment. Current Protein & Peptide Science 9: 578–590.CrossRefGoogle Scholar
  48. Weber, R. E., 1990. Functional significance and structural basis of multiple hemoglobins with special reference to ectothermic vertebrates. In Truchot, J. P. & B. Lahlou (eds), Transport, Respiration and Excretion: Comparative and Environmental Aspects. Animal Nutrition and Transport Processes. Karger, Basel: 58–75.Google Scholar
  49. Weber, R. E., A. Fago, A. L. Val, A. Bang, M. L. Van Hauwert, S. Dewilde, F. Zal & L. Moens, 2000. Isohemoglobin differentiation in the bimodal-breathing amazon catfish Hoplosternum littorale. Journal of Biological Chemistry 275: 17297–17305.CrossRefPubMedGoogle Scholar
  50. Wells, R. M. G., M. D. Ashby, S. J. Duncan & J. A. MacDonald, 1980. Comparative studies of the erythrocytes and hemoglobins in nototheniid fishes from Antarctica. Journal of Fish Biology 17: 517–527.CrossRefGoogle Scholar
  51. Williams, R., G. N. Tuck, A. J. Constable & T. Lamb, 2002. Movement, growth and available abundance to the fishery of Dissostichus eleginoides Smitt, 1898 at Heard Island, derived from tagging experiments. CCAMLR Science 9: 33–48.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Daniela Coppola
    • 1
  • Daniela Giordano
    • 1
  • Stefania Abbruzzetti
    • 2
    • 3
  • Francesco Marchesani
    • 4
  • Marco Balestrieri
    • 1
  • Guido di Prisco
    • 1
  • Cristiano Viappiani
    • 3
    • 5
  • Stefano Bruno
    • 1
    • 4
    Email author
  • Cinzia Verde
    • 1
    • 6
    Email author
  1. 1.Institute of Biosciences and BioResources, CNRNaplesItaly
  2. 2.Dipartimento di BioscienzeUniversità degli Studi di ParmaParmaItaly
  3. 3.NEST Istituto Nanoscienze, CNRPisaItaly
  4. 4.Dipartimento di FarmaciaUniversità degli Studi di ParmaParmaItaly
  5. 5.Dipartimento di Fisica e Scienze della TerraUniversità degli Studi di ParmaParmaItaly
  6. 6.Department of SciencesUniversity “Roma 3”RomeItaly

Personalised recommendations