Hydrobiologia

, Volume 765, Issue 1, pp 343–358 | Cite as

Phenotypic plasticity in wild marine fishes associated with fish-cage aquaculture

  • Mouna Abaad
  • Víctor M. Tuset
  • Daniel Montero
  • Antoni Lombarte
  • José L. Otero-Ferrer
  • Ricardo Haroun
Primary Research Paper

Abstract

Two opportunistic fish species associated with fish farms, bogue (Boops boops) and salema (Sarpa salpa), were studied to infer whether changes in their feeding habits may cause a phenotypic response in body and otolith shape. Specimens were collected close to aquaculture cage sites, called ‘wild-farmed fish’, and from control sites far away from these areas, called ‘wild fish’. The fish body shapes were examined with geometric morphometric analysis using 21 landmarks. The otolith contours were analysed using wavelet function, whereas otolith weights were used as indicators of fish growth rates. Statistically significant differences were observed in body shape between wild-farmed fish and wild fish of both species. The wild-farmed fish had a smaller head and eye, and in bogue also a slighter snout curvature and head depth. Otolith shape and weight did not differ between groups in bogue. By contrast, there were significant differences in otolith shape and weight between groups in salema. A complementary study in salema indicated that the wild-farmed fishes grew more in weight and accumulated higher concentrations of ‘terrestrial fatty acids’ (linoleic and alpha-linolenic acids), which are used in fish feeds. Our findings clearly demonstrated an influence of coastal sea cages on metabolism of some wild fishes.

Keywords

Fishes Morphology Body Otolith Feeding Anthropic activity 

References

  1. Adams, D. C., 1999. Methods for shape analysis of landmark data from articulated structures. Evolutionary Ecology Research 1: 959–970.Google Scholar
  2. Angeles, A. D. J., J. G. Gorospe, M. A. J. Torres & C. G. Demayo, 2014. Length-weight relationship, body shape variation and asymmetry in body morphology of Siganus guttatus from selected areas in five Mindanao bays. International Journal of Aquatic Science 5(1): 40–57.Google Scholar
  3. Arechavala-Lopez, P., I. Uglem, P. Sánchez-Jerez, D. Fernández-Jover, J. T. Bayle-Sempere & R. Nilsen, 2010. Movements of grey mullet Liza aurata and Chelon labrosus associated with coastal fish farms in the western Mediterranean Sea. Aquaculture Environment Interactions 1: 127–136.CrossRefGoogle Scholar
  4. Arechavala-Lopez, P., P. Sánchez-Jerez, J. T. Bayle-Sempere, G. G. Sfakianakis & S. Somarakis, 2011. Morphological differences between wild and farmed Mediterranean fish. Hydrobiologia 679: 217–231.CrossRefGoogle Scholar
  5. Arechavala-Lopez, P., I. Uglem, D. Fernández-Jover, J. T. Bayle-Sempere & P. Sánchez-Jerez, 2012. Post-escape dispersion of farmed sea bream (Sparus aurata L.) and recaptures by local fisheries in the Western Mediterranean Sea. Fisheries Research 121–122: 126–135.CrossRefGoogle Scholar
  6. Bacher, K., A. Gordoa & O. Sagué, 2015. Feeding activity strongly affects the variability of wild fish aggregations within fish farms: a sea bream farm as a case study. Aquaculture Research 46: 552–564.CrossRefGoogle Scholar
  7. Basaran, F., H. Ozbilgin & Y. D. Ozbilgin, 2007. Comparison of the swimming performance of farmed and wild gilthead sea bream, Sparus aurata. Aquaculture Research 38: 452–456.CrossRefGoogle Scholar
  8. Beacham, T. D., 1990. A genetic analysis of meristic and morphometric variation in chum salmon (Oncorhynchus keta) at three different temperatures. Canadian Journal of Zoology 68: 225–229.CrossRefGoogle Scholar
  9. Begg, G. A., K. D. Friedland & J. B. Pearce, 1999. Stock identification and its role in stock assessment and fisheries management: an overview. Fisheries Research 43: 1–8.CrossRefGoogle Scholar
  10. Bookstein, F. L., 1991. Morphometric Tools for Landmark Data. Geometry and Biology. Cambridge University Press, New York.Google Scholar
  11. Borcherding, J. & C. Magnhagen, 2008. Food abundance affects both morphology and behaviour of juvenile perch. Ecology of Freshwater Fish 17: 207–218.CrossRefGoogle Scholar
  12. Boyra, A., P. Sanchez-Jerez, F. Tuya, F. Espino & R. J. Haroun, 2004. Attraction of wild coastal fishes to cage fish farms on Atlantic subtropical latitude (Gran Canaria, Canary Islands). Environmental Biology of Fishes 70: 393–401.CrossRefGoogle Scholar
  13. Burke, N., D. Brophy & P. A. King, 2008. Shape analysis of otolith annuli in Atlantic herring (Clupea harengus); a new method for tracking fish populations. Fisheries Research 91: 133–143.CrossRefGoogle Scholar
  14. Cardinale, M., P. Doering-Arjes, M. Kastowsky & H. Mosegaard, 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Science 61: 158–167.CrossRefGoogle Scholar
  15. Campana, S. E., 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188: 263–297.CrossRefGoogle Scholar
  16. Capoccioni, F., C. Costa, J. Aguzzi, P. Menesatti, A. Lombarte & E. Ciccotti, 2011. Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel (Anguilla anguilla, L.) populations. Journal of Experimental Marine Biology and Ecology 397: 1–7.CrossRefGoogle Scholar
  17. Carlström, D., 1963. A crystallographic study of vertebrate otoliths. The Biological Bulletin 125: 441–463.CrossRefGoogle Scholar
  18. Crichigno, S. A., M. A. Battini & V. E. Cussac, 2014. Diet induces phenotypic plasticity of Percichthys trucha (Valenciennes 1833 (Perciformes, Percichthyidae) in Patagonia. Zoologischer Anzeiger 253: 192–202.CrossRefGoogle Scholar
  19. Christie, W. W., 1982. Lipid Analysis, 2nd ed. Pergamon Press, Oxford.Google Scholar
  20. Currens, K. P., C. S. Sharpe, R. Hjort, C. B. Schreck & H. W. Li, 1989. Effects of different feeding regimes on the morphometrics of Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (O. mykiss). Copeia 1989: 689–695.CrossRefGoogle Scholar
  21. Degens, E. T., W. G. Deuser & R. L. Haedrich, 1969. Molecular structure and composition of fish otoliths. Marine Biology 2: 105–113.CrossRefGoogle Scholar
  22. Dempster, T., P. Sanchez-Jerez, J. T. Bayle-Sempere, F. Giménez-Casalduero & C. Valle, 2002. Attraction of wild fish to sea-cage fish farms in the south-western Mediterranean Sea: spatial and short-term temporal variability. Marine Ecology Progress Series 242: 237–252.CrossRefGoogle Scholar
  23. Dempster, T., I. Uglem, P. Sanchez-Jerez, D. Fernandez-Jover, J. Bayle Sempere, R. Nilsen & P. A. BjØrn, 2009. Coastal salmon farms attract large and persistent aggregations of wild fish: an ecosystem effect. Marine Ecology Progress Series 385: 1–14.CrossRefGoogle Scholar
  24. Duarte-Neto, P., R. Lessa, B. Stosic & E. Morize, 2008. The use of sagittal otoliths in discriminating stocks of common dolphinfish (Coryphaena hippurus) off northeastern Brazil using multishape descriptors. ICES Journal of Marine Science 65: 1144–1152.CrossRefGoogle Scholar
  25. Dryden, I. L., 2014. Shapes: Statistical Shape Analysis. R package version 1.1-10. http://CRAN.R-project.org/package=shapes
  26. Dryden, I. L. & K. V. Mardia, 1998. Statistical Shape Analysis. Wiley, New York.Google Scholar
  27. Ellis, T., B. R. Howell & J. Hayes, 1997. Morphological differences between wild and hatchery-reared turbot. Journal of Fish Biology 50: 1124–1128.CrossRefGoogle Scholar
  28. Favaloro, E., L. Lopiano & A. Mazzola, 2002. Rearing of sharpsnout seabream (Diplodus puntazzo, Cetti 1777) in a Mediterranean fish farm: monoculture versus polyculture. Aquaculture Research 33: 137–140.CrossRefGoogle Scholar
  29. Favaloro, E. & A. Mazzola, 2003. Shape change during the growth of sharpsnout seabream reared under different conditions in a fish farm of the southern Tyrrhenian Sea. Aquacultural Engineering 29: 57–63.CrossRefGoogle Scholar
  30. Fernández-Jover, D., J. A. L. Jimenez, P. Sánchez-Jerez, J. Bayle-Sempere, F. G. Casalduero, F. J. M. Lopez & T. Dempster, 2007. Changes in body condition and fatty acid composition of wild Mediterranean horse mackerel (Trachurus mediterraneus, Steindachner, 1868) associated to sea cage fish farms. Marine Environmental Reseach 63: 1–18.CrossRefGoogle Scholar
  31. Fernández-Jover, D., P. Sánchez-Jerez, J. Bayle-Sempere, C. Valle & T. Dempster, 2008. Seasonal patterns and diets of wild fish assemblages associated with Mediterranean coastal fish farms. ICES Journal of Marine Science 65: 1153–1160.CrossRefGoogle Scholar
  32. Fernandez-Jover, D., P. Sanchez-Jerez, J. T. Bayle-Sempere, P. Arechavala-Lopez, L. Martinez-Rubio, J. A. López-Jiménez & F. J. Martinez-López, 2009. Coastal fish farms are settlement sites for juvenile fish. Marine Environmental Research 68: 89–96.PubMedCrossRefGoogle Scholar
  33. Fernández Jover, D., P. Arechavala López, L. Martínez Rubio, D. R. Tocher, J. T. Bayle-Sempere, J. A. López Jiménez & F. J. Martínez-López, 2011. Monitoring the influence of marine aquaculture on wild fish communities: benefits and limitations of fatty acid profiles. Aquaculture Environment Interactions 2: 39–47.CrossRefGoogle Scholar
  34. Fernandez-Jover, D. & P. Sánchez-Jerez, 2015. Comparison of diet and otolith growth of juvenile wild fish communities at fish farms and natural habitats. ICES Journal of Marine Science. doi:10.1093/icesjms/fsu153.Google Scholar
  35. Fiske, P., R. A. Lund & L. P. Hansen, 2005. Identifying Fish Farm Escapees. In Cadrin, S. X., K. D. Friedland & J. R. Waldman (eds), Stock Identification Methods: Applications in Fishery Science. Elsevier, Amsterdam: 659–680.CrossRefGoogle Scholar
  36. Fleming, I. A., T. Agustsson, B. Finstad, J. I. Johnsson & B. T. Björnsson, 2002. Effects of domestication on growth physiology and endocrinology of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Science 59: 1323–1330.CrossRefGoogle Scholar
  37. Folch, J., M. Lees & G. H. Sloane Stanley, 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226: 497–509.PubMedGoogle Scholar
  38. Fowler, A. J., 1995. Annulus Formation in Otoliths of Coral Reef Fish—A Review. In Secor, D. H., J. M. Dean & S. E. Campana (eds), Recent Developments in Fish Otolith Research. Belle W. Baruch Library in Marine Science, Hilton Head, SC: 45–64.Google Scholar
  39. Francis, R. I. C. C., 1995. The Analysis of Otolith Data – A Mathematician’s Perspective (What, Precisely, is Your Model?). In Secor, D. H., J. M. Dean & S. E. Campana (eds), Recent Developments in Fish Otolith Research. Belle W. Baruch Library in Marine Science, Hilton Head, SC: 81–95.Google Scholar
  40. Gauldie, R. W. & J. S. Crampton, 2002. An eco-morphological explanation of individual variability in the shape of the fish otolith: comparison of the otolith of Hoplostethus atlanticus with other species by depth. Journal of Fish Biology 60: 1204–1221.CrossRefGoogle Scholar
  41. Gauldie, R. W. & D. G. A. Nelson, 1990. Otolith growth in fishes. Composition and Biochemical Physiology 97: 119–135.CrossRefGoogle Scholar
  42. Gagliano, M. & M. I. McCormick, 2004. Feeding history influences otolith shape in tropical fish. Marine Ecology Progress Series 278: 291–296.CrossRefGoogle Scholar
  43. Grigorakis, K., M. N. Alexis, K. D. A. Taylor & M. Hole, 2002. Comparison of wild and cultured gilthead sea bream (Sparus aurata); composition, appearance and seasonal variations. International Journal of Food Science and Technology 37: 477–484.CrossRefGoogle Scholar
  44. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. Past: paleontological statistics 435 software package for education and data analysis. Palaeontologia Electronica 4(1): 1–9.Google Scholar
  45. Hanson, K. C., C. T. Hasler, C. D. Suski & S. J. Cooke, 2007. Morphological correlates of swimming activity in wild largemouth bass (Micropterus salmoides) in their natural environment. Composition and Biochemical Physiology Part A 148: 913–920.CrossRefGoogle Scholar
  46. Hard, J. J., B. A. Berejiikian, E. P. Tezak, S. L. Schroder, C. M. Knudsen & L. T. Parker, 2000. Evidence for morphometric differentiation of wild and captively reared adult coho salmon: a geometric analysis. Environmental Biology of Fishes 58: 61–67.CrossRefGoogle Scholar
  47. Hegrenes, S., 2001. Diet-induced phenotypic plasticity of feeding morphology in the orangespotted sunfish, Lepomis humilis. Ecology of Freshwater Fish 10: 35–42.CrossRefGoogle Scholar
  48. Heermann, L., P. Beeck & J. Borcherding, 2007. Two size classes of 0 + year perch: is phenotypic plasticity based on food resources? Journal of Fish Biology 70: 1365–1377.CrossRefGoogle Scholar
  49. Hidalgo, M., E. M. Olsen, J. Ohlerger, F. Saborido-Rey, H. Murua, C. Piñeriro & N. C. Stenseth, 2014. Contrasting evolutionary demography induced by fishing: the role of adaptive phenotypic plasticity. Ecological Applications 24: 1101–1114.PubMedCrossRefGoogle Scholar
  50. Hoedt, F. E., 1992. Validation of daily growth increments in otoliths from Thryssa aestuaria (Ogilby), a tropical anchovy from Northern Australia. Australian Journal of Marine and Freshwater Research 43: 1043–1050.CrossRefGoogle Scholar
  51. Izquierdo, M. S., T. Watanabe, T. Takeuchi, T. Arakawa & C. Kitajima, 1990. Optimum EFA Levels in Artemia to Meet the EFA Requirements of Red Sea Bream (Pagrus major). In Takeda, M. & T. Watanabe (eds), The Current Status of Fish Nutrition in Aquaculture. Tokyo University Fisheries, Tokyo: 221–232.Google Scholar
  52. Izquierdo-Gómez, D., D. González-Silvera, P. Arechavala-López, J. A. López-Jiménez, J. T. Bayle-Sempere & P. Sánchez-Jerez, 2014. Exportation of excess feed from Mediterranean fish farms to local fisheries through different targeted fish species. ICES Journal of Marine Science. doi:10.1093/icesjms/fsu179.Google Scholar
  53. Jadot, C., A. Donnay, M. L. Acolas, Y. Cornet & B. M. L. Anras, 2006. Activity patterns, home-range size, and habitat utilization of Sarpa salpa (Teleostei: Sparidae) in the Mediterranean Sea. ICES Journal of Marine Science 63: 128–139.CrossRefGoogle Scholar
  54. Kassam, D. D., T. Sato & K. Yamaoka, 2002. Landmark-based morphometric analysis of the body shape of two sympatric species, Ctenopharynx pictus and Otopharynx sp. “heterodon nankhumba” (Teleostei: Cichlidae), from Lake Malawi. Ichthyological Reseach 49: 340–345.CrossRefGoogle Scholar
  55. Katayama, S. & T. Isshiki, 2007. Variation in otolith macrostructure of Japanese flounder (Paralichthys olivaceus): a method to discriminate between wild and released fish. Journal of Sea Research 57: 180–186.CrossRefGoogle Scholar
  56. Karpouzi, V. S. & K. I. Stergiou, 2003. The relationship between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. Journal of Fish Biology 62: 1353–1365.CrossRefGoogle Scholar
  57. Kling, P., E. Jönsson, T. O. Nilsen, I. E. Einarsdottir, I. Rønnestad, S. O. Stefansson & B. T. Björnsson, 2012. The role of growth hormone in growth, lipid homeostasis, energy utilization and partitioning in rainbow trout: interactions with leptin, ghrelin and insulin-like growth factor I. General and Comparative Endocrinology 175: 153–162.PubMedCrossRefGoogle Scholar
  58. Langerhans, R. B., L. J. Chapman & T. J. DeWitt, 2007. Complex phenotype–environment associations revealed in an East African cyprinid. Journal of Evolutionary Biology 20(3): 1171–1181.PubMedCrossRefGoogle Scholar
  59. Layman, C. A., R. B. Langerhans & K. O. Winemiller, 2005. Body size, not other morphological traits, characterizes cascading effects in fish assemblage composition following commercial netting. Canadian Journal of Fisheries and Aquatic Science 62: 2802–2810.CrossRefGoogle Scholar
  60. Lenhardt, M., I. Jarić, G. Cvijanović, J. Kolarević, Z. Gačić, M. Smederevac-Lalić & Ž. Višnjić-Jeftić, 2012. Comparison of morpholo gical characters between wild and cultured sterlet (Acipenser ruthenus L.). Slovenian Veterinary Research 49(4): 177–184.Google Scholar
  61. Littauer, G. A., J. F. Glahn, D. S. Reinhold & M. W. Brunson, 1997. Control of bird predation at aquaculture facilities: strategies and cost estimates. Southern Regional Aquaculture Center Publication 401. Mississippi Cooperative State Extension Service, Mississippi State, MAGoogle Scholar
  62. Lleonart, J., J. Salat & G. J. Torres, 2000. Removing allometric effects of body size in morphological analysis. Journal of Theorethical Biology 205: 85–93.CrossRefGoogle Scholar
  63. Lombarte, A. & J. Lleonart, 1993. Otolith size changes related with body growth, habitat depth and temperature. Environmental Biology of Fishes 37: 297–306.CrossRefGoogle Scholar
  64. Lombarte, A., G. J. Torres & B. Morales-Nin, 2003. Specific Merluccius otolith growth patterns related to phylogenetics and environmental U.K. Journal of Marine Biological Association 83: 277–281.CrossRefGoogle Scholar
  65. Loy, A., C. Boglione & S. Cataudella, 1999. Geometric morphometrics and morpho-anatomy: a combined tool in the study of sea bream (Sparus aurata, Sparidae) shape. Journal Applied Ichthyology 15: 104–110.CrossRefGoogle Scholar
  66. Loy, A., C. Boglione, F. Gagliardi, L. Ferrucci & S. Cataudella, 2000. Geometric morphometrics and internal anatomy in sea bass shape analysis (Dicentrarchus labrax L., Moronidae). Aquaculture 186: 33–44.CrossRefGoogle Scholar
  67. Lychakov, D. V. & Y. T. Rebane, 2002. Otolith regularities. Bioacoustics 12: 125–128.CrossRefGoogle Scholar
  68. Machias, A., I. Karakassis, M. Labropoulou, S. Somarakis, K. N. Papadopoulou & C. Papaconstantinou, 2004. Changes in wild fish assemblages after the establishment of a fish farming zone in oligotrophic marine ecosystems. Estuarine, Coastal and Shelf Science 60: 771–779.CrossRefGoogle Scholar
  69. Mairesse, G., M. Thomas, J. N. Gardeur & J. Brun-Bellut, 2005. Appearance and technological characteristics in wild and reared Eurasian perch, Perca fluviatilis (L.). Aquaculture 246: 295–311.CrossRefGoogle Scholar
  70. Maderbacher, M., C. Bauer, J. Herler, L. Postl, L. Makasa & C. Sturmbauer, 2008. Assessment of traditional versus geometric morphometrics for discriminating populations of the Tropheus moorii species complex (Teleostei: Cichlidae), a Lake Tanganyika model for allopatric speciation. Journal of Zoological Systematics and Evolutionary Research 46(2): 153–161.CrossRefGoogle Scholar
  71. Marcil, J., D. P. Swain & J. A. Hutchings, 2006. Genetic and environmental components of phenotypic variation in body shape among populations of Atlantic cod (Gadus morhua L.). Biological Journal of Linnean Society 88: 351–365.CrossRefGoogle Scholar
  72. McClanahan, T. & S. Mangi, 2000. Spillover of exploitable fishes from a marine park and its effect on the adjacent fishery. Ecological Applications 10: 1792–1805.CrossRefGoogle Scholar
  73. Mendez-Villamil, M. M., J. M. Lorenzo, J. G. Pajuelo, A. Ramos & J. Coca, 2002. Aspects of the life history of the salema, Sarpa salpa (Pisces, Sparidae), off the Canarian Archipelago (central-east Atlantic). Environmental Biology of Fishes 63: 183–192.CrossRefGoogle Scholar
  74. Meyer, A., 1987. Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 41: 1357–1369.CrossRefGoogle Scholar
  75. Moe, B., S. Brunvoll, D. Mork, T. E. Brobakk & C. Bech, 2004. Developmental plasticity of physiology and morphology in diet-restricted European shag nestlings (Phalacrocorax aristotelis). The Journal of Experimental Biology 207: 4067–4076.PubMedCrossRefGoogle Scholar
  76. Molony, B. W. & M. J. Sheaves, 1998. Otolith increment widths and lipid contents during starvation and recovery feeding in adult Ambassis vachelli (Richardson). Journal Experimental of Marine Biology and Ecology 221: 257–276.CrossRefGoogle Scholar
  77. Monteiro, P., L. Bentes, R. Coelho, C. Correia, J. M. S. Goncalves, P. G. Lino, J. R. Beiro & K. Erzini, 2006. Age and growth, mor- tality, reproduction and relative yield per recruit of the bogue, (Boops boops L., Sparidae), from the Algarve (south of Portugal) longline fishery. Journal of Applied Ichthyology 22: 345–352.CrossRefGoogle Scholar
  78. Morales-Nin, B., 2000. Review of the growth regulation processes of otolith daily increment formation. Fisheries Research 46: 53–67.CrossRefGoogle Scholar
  79. Morales-Nin, B., E. Gutiérrez & S. Massutí, 1995. Patterns of primary growth increments in otoliths of Sparus aurata larvae in relation to water temperature and food consumption. Science Marine 59(1): 57–64.Google Scholar
  80. Mosegaard, H., H. Svedäng & K. Taberman, 1988. Uncoupling of somatic and otolith growth rates in arctic char (Salvelinus alpinus) as an effect of differences in temperature response. Canadian Journal of Fisheries and Aquatic Science 45: 1514–1524.CrossRefGoogle Scholar
  81. Mugiya, Y., 1990. Long-term effects of hypophysectomy on the growth and calcification of otoliths and scales in the goldfish Carassius auratus. Zoological Science 7: 273–280.Google Scholar
  82. Nishimoto, M. M., L. Washburn, R. R. Warner, M. S. Love & G. L. Paradis, 2010. Otolith elemental signatures reflect residency in coastal water masses. Environmental Biology of Fishes 89: 341–356.CrossRefGoogle Scholar
  83. Panfili, J., M. C. Ximénès & T. Do Chi, 1990. Age determination eels in the French Mediterranean lagoons using classical methods and an image analysis system. Internationale Revue der gesamten Hydrobiologie und Hydrographie 75(6): 745–754.CrossRefGoogle Scholar
  84. Panfili, J., J. Tomás & B. Morales-Nin, 2009. Otolith Microstructure in Tropical Fish. In Green, B. S., B. D. Mapstone, G. Carlos, & G. A. Begg (eds), Tropical Fish Otoliths: Information for Assessment, Management and Ecology. Reviews: Methods and Technologies in Fish Biology and Fisheries. Springer, New York: 212–248.Google Scholar
  85. Pakkasmaa, S. & J. Piironen, 2000. Water velocity shapes juvenile salmonids. Evolutionary Ecology 14: 721–730.CrossRefGoogle Scholar
  86. Parisi-Baradad, V., A. Lombarte, E. García-Ladona, J. Cabestany, J. Piera & Ò. Chic, 2005. Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Marine and Freshwater Research 56: 795–804.CrossRefGoogle Scholar
  87. Parisi-Baradad, V., A. Manjabacas, A. Lombarte, R. Olivella, Ò. Chic, J. Piera & E. García-Ladona, 2010. Automatic taxon identification of teleost fishes in an otolith online database. Fisheries Research 105: 13–20.CrossRefGoogle Scholar
  88. Pawson, M. G., 1990. Using otolith weight to age fish. Journal of Fish Biology 36: 521–531.CrossRefGoogle Scholar
  89. Popper, A. N. & S. Coombs, 1980. Auditory mechanisms in teleost fishes. American Scientist 68: 429–440.Google Scholar
  90. Popper, A. N. & Z. Lu, 2000. Structure–function relationships in fish otolith organs. Fisheries Research 46: 15–25.CrossRefGoogle Scholar
  91. Popper, A. N., J. U. Ramcharitar & S. E. Campana, 2005. Why otoliths? Insights from inner ear physiology and fisheries biology. Marine and Freshwater Research 56: 497–504.CrossRefGoogle Scholar
  92. Ramírez, B., D. Montero, M. Izquierdo & R. Haroun, 2013. Aquafeed imprint on bogue (Boops boops) populations and the value of fatty acids as indicators of aquaculture-ecosystem interaction: are we using them properly? Aquaculture 414–415: 294–302.CrossRefGoogle Scholar
  93. R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.
  94. Reichenbacher, B., G. R. Feulner & T. Schulz-Mirbach, 2009. Geographic variation inotolith morphology among freshwater populations of Aphanius dispar (Teleostei, Cyprinodontiformes) from the Southeastern Arabian Peninsula. Journal of Morphology 270: 469–484.PubMedCrossRefGoogle Scholar
  95. Reznick, D., E. Lindbeck & H. Bryga, 1989. Slower growth results in large otoliths: an experimental test with guppies (Peocilia reticulata). Canadian Journal of Fisheries and Aquatic Science 46: 108–112.CrossRefGoogle Scholar
  96. Riera, R., F. Tuya, Ó. Pérez, E. Ramos, M. Rodríguez & Ó. Monterroso, 2014. Effects of proximity to offshore fish farms over soft-bottom macrofauna. Journal of the Marine Biological Association of the UK 95(2): 255–263.CrossRefGoogle Scholar
  97. Robinson, B. W. & K. J. Parsons, 2002. Changing time, space, and faces: test and implications of adaptive morphological plasticity in the fishes of northern postglacial lakes. Canadian Journal of Fisheries and Aquatic Science 59: 1819–1833.CrossRefGoogle Scholar
  98. Rohlf, F. J., 2001. TPS Dig 2.16 and TPS relative warps software. State University of New York at Stony Brook.Google Scholar
  99. Rohlf, F. J. & L. F. Marcus, 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8(4): 129–132.CrossRefGoogle Scholar
  100. Rogdakis, Y. G., K. K. Koukou, A. Ramfos, E. Dimitriou & G. N. Katselis, 2011. Comparative morphology of wild, farmed and hatchery released gilthead sea bream (Sparus aurata) in western Greece. International Journal of Fisheries and Aquaculture 3: 1–9.Google Scholar
  101. Sadighzadeh, Z., J. L. Otero-Ferrer, A. Lombarte, M. R. Fatemi & V. M. Tuset, 2014. An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology. Scientia Marina 78: 353–362.CrossRefGoogle Scholar
  102. Sales, J. & B. Glencross, 2010. A meta analysis of the effects of dietary marine oil replacement with vegetable oils on growth, feed conversion and muscle fatty acid composition of fish species. Aquaculture Nutrition 17(2): e271–e287.CrossRefGoogle Scholar
  103. Sarà, M., E. Favaloro & A. Mazzola, 1999. Comparative morphometrics of sharpsnout seabream (Diplodus puntazzo Cetti, 1777), reared in different conditions. Aquaculture Engineering 19: 195–209.CrossRefGoogle Scholar
  104. Sánchez-Jerez, P., D. Fernández-Jover, I. Uglem, P. Arechavala-López, T. Dempster, J. T. Bayle-Sempere, C. Valle Pérez, D. Izquierdo, P. A. Bjørn & R. Nilsen, 2011. Coastal Fish Farms as Fish Aggregation Devices (FADs). In Bortone, S. A., F. Pereira Brandini, G. Fabi & S. Otake (eds), Artificial Reefs in Fishery Management. CRC Press/Taylor and Francis Group, Boca Raton: 187–208.CrossRefGoogle Scholar
  105. Secor, D. H. & J. M. Dean, 1989. Somatic growth effects on the otolith fish size relationship in young pond-reared striped bass, Morone saxatilis. Canadian Journal of Fisheries and Aquatic Science 46: 113–121.CrossRefGoogle Scholar
  106. Simoneau, M., J. M. Casselman & R. Fortin, 2000. Determining the effect of negative allometry (length/height relationship) on variation in otolith shape in lake trout (Salvenus namaycush), using Fourier-series analysis. Canadian Journal of Zoology 78: 1597–1603.CrossRefGoogle Scholar
  107. Skog, T. E., K. Hylland, B. E. Torstense & M. H. Berntssen, 2003. Salmon farming affects the fatty acid composition and taste of wild saithe Pollachius virens. Living Aquatic Resources 34: 999–1007.Google Scholar
  108. Skulason, S. & T. B. Smith, 1995. Resource polymorphisms in vertebrates. Trends in Ecology and Evolution 10: 366–370.PubMedCrossRefGoogle Scholar
  109. Sudirman, H., H. Halide, J. Jompa, I. Zulfikar & A. D. McKinnon, 2009. Wild fish associated with tropical sea cage aquaculture in South Sulawesi, Indonesia. Aquaculture 286: 233–239.CrossRefGoogle Scholar
  110. Swaine, D. P., B. E. Ridell & C. B. Murray, 1991. Morphological differences between hatchery and wild populations of coho salmon (Oncorhynchus kisutch): environmental versus genetic origin. Canadian Journal of Fisheries and Aquatic Science 48: 1783–1791.CrossRefGoogle Scholar
  111. Šegvić-Bubić, T., I. Talijančić, L. Grubišić, D. Izquierdo-Gomez & I. Katavić, 2014. Morphological and molecular differentiation of wild and farmed gilthead sea bream Sparus aurata: implications for management. Aquaculture Environment Interacttions 6: 43–54.CrossRefGoogle Scholar
  112. Titus, U., J. A. Mosher & B. K. Williams, 1984. Chance corrected classification for use in discriminant analysis: ecological applications. The American Midland Naturalist 111: 1–7.CrossRefGoogle Scholar
  113. Trapani, J., 2003. Geometric morphometric analysis of body-form variability in Cichlasoma minckleyi, the Cuatro Cienegas cichlid. Environmental Biology of Fishes 68: 357–369.CrossRefGoogle Scholar
  114. Tuset, V. M., J. A. González, I. J. Lozano & M. M. García-Díaz, 2004. Age and growth of the blacktail comber, Serranus atricauda (Serranidae), off the Canary Islands (central-eastern Atlantic). Bulletin of Marine Science 74: 53–68.Google Scholar
  115. Tuset, V. M., P. L. Rosin & A. Lombarte, 2006. Sagittal otolith shape used in the identification of fishes of the genus Serranus. Fisheries Research 81: 316–325.CrossRefGoogle Scholar
  116. Tuset, V. M., A. Lombarte & C. A. Assis, 2008. Otolith Atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina 72(S1): 7–198.Google Scholar
  117. Tuset, V. M., R. Imondi, G. Aguado, J. L. Otero-Ferrer, L. Sanstchi, A. Lombarte & M. S. Love, 2015. Otolith patterns of rockfishes from the Northeastern Pacific. Journal Morphology 276: 458–469.CrossRefGoogle Scholar
  118. Tuya, F., P. Sanchez-Jerez, A. Boyra & R. Haroun, 2005. Non-metric multivariate analysis of the demersal icthhyofauna along soft bottoms of the Eastern Atlantic: comparison between unvegetated substrates, seagrass meadows and sandy bottoms under the influence of sea-cage fish farms. Marine Biology 14: 1229–1237.Google Scholar
  119. Tuya, F., P. Sánchez-Jerez, T. Dempster, A. Boyra & R. Haroun, 2006. Changes in demersal wild fish aggregations beneath a sea-cage fish farm after the cessation of farming. Journal of Fish Biology 69: 682–697.CrossRefGoogle Scholar
  120. Uglem, I., O. Karlsen, P. Sánchez-Jerez & B. J. Saether, 2014. Impacts of wild fishes attracted to open-cage salmonids farms in Norway. Aquaculture Environmental Interactions 6: 91–103.CrossRefGoogle Scholar
  121. Vehanen, T. & A. Huusko, 2011. Brown trout Salmo trutta express different morphometrics due to divergence in the rearing environment. Journal of Fish Biology 79: 1167–1181.PubMedCrossRefGoogle Scholar
  122. Vignon, M. & F. Morat, 2010. Environmental and genetic determinant of otolith shaperevealed by a non-indigenous tropical fish. Marine Ecology Progress Series 411: 231–241.CrossRefGoogle Scholar
  123. West-Eberhard, M. J., 1989. Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics 20: 249–278.CrossRefGoogle Scholar
  124. Williams, T. & B. C. Bedford, 1974. The Use of Otoliths in Age Determination. In Bagenal, T. B. (ed.), The Ageing of Fish. Unwin Brothers, Old Woking, SY: 114–123.Google Scholar
  125. Wintzer, A. P. & P. J. Motta, 2005. Diet-induced phenotypic plasticity in the skull morphology of hatchery-reared Florida largemouth bass, Micropterus salmoides floridanus. Ecology of Freshwater Fish 14: 311–318.CrossRefGoogle Scholar
  126. Wimberger, P. H., 1991. Plasticity of jaw and skull morphology in the neotropical cichlids Geophagus brasilliensis and G. stradochneri. Evolution 45: 1545–1563.CrossRefGoogle Scholar
  127. Worthington, D. G., P. J. Doherty & A. J. Fowler, 1995. Variation in the relationship between otolith weight and age: implications for the estimation of age of two tropical damselfish (Pomacentrus moluccensis and P. wardi). Canadian Journal of Fisheries and Aquatic Science 52: 233–242.CrossRefGoogle Scholar
  128. Wursig, B. & G. A. Gailey, 2002. Marine Mammals and Aquaculture: Conflicts and Potential Resolutions. In Stickney, R. R. & J. P. Macvey (eds), Responsible Marine Aquaculture. CABI publishing, London: 45–54.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mouna Abaad
    • 1
  • Víctor M. Tuset
    • 2
  • Daniel Montero
    • 1
  • Antoni Lombarte
    • 2
  • José L. Otero-Ferrer
    • 3
  • Ricardo Haroun
    • 4
  1. 1.Grupo de investigación en Acuicultura, IU-EcoaquaUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.Instituto de Ciencias del Mar (CSIC)BarcelonaSpain
  3. 3.Departamento de Ecoloxía e Bioloxía Animal-Facultade de CienciasUniversidade de VigoVigoSpain
  4. 4.Grupo de investigación en Biodiversidad y Conservación, IU-EcoaquaUniversidad de Las Palmas de Gran CanariasLas PalmasSpain

Personalised recommendations