Advertisement

Hydrobiologia

, Volume 761, Issue 1, pp 335–361 | Cite as

The Ross Sea and its rich life: research on molecular adaptive evolution of stenothermal and eurythermal Antarctic organisms and the Italian contribution

  • Guido di Prisco
  • Cinzia Verde
BIOLOGY OF THE ROSS SEA Review Paper

Abstract

The official involvement of Italy in Antarctic research dates back to 1985, when Mario Zucchelli Station (the former Terra Nova Bay Station) was established in Terra Nova Bay. Italy joined the Antarctic Treaty in 1987. This article is an overview of the wide-ranging research in marine biology performed in the last three decades by the author’s team in the Ross Sea. Fundamental questions have been addressed, related to cold adaptations—with special attention to the molecular bases—evolved by marine organisms along with progressive cooling in this geographic area, also analysed in comparison with other important areas, such as the Peninsula, the Weddell Sea, the sub-Antarctic and the Arctic. The basic stepping stone of this research was the integration of ecophysiology with molecular aspects, in the general framework of biodiversity, adaptation and evolution. Investigations have addressed a number of Ross Sea taxa, comprising fish, birds, urchins, whales, seals and bacteria. Its significance has special meaning in view of the control that Antarctica exerts on the world climate and ocean circulation, which has awakened great interest in the evolutionary biology of the organisms that live there.

Keywords

Ross Sea Climate change Molecular adaptive evolution Hemoprotein Enzyme Metallothionein 

Notes

Acknowledgements

The reviewed work, supported by the Italian National Programme for Antarctic Research (PNRA), was in the framework of the SCAR and IPY programme EBA, of the Coordination Action for Research Activities on Life in Extreme Environments (CAREX), and is now in the framework of the legacy of EBA, namely the SCAR programmes AntEco and AnT-ERA; and of TEAM-Fish. G Altomonte, A Antignani, M Balestrieri, L Camardella, V Carratore, C Caruso, MA Ciardiello, E Cocca, D Coppola, R D’Avino, D de Pascale, A Fago, R Di Fraia, D Giordano, L Grassi, P Marinakis, D Pagnozzi, L Raiola, Alessia Riccio, M Romano, R Russo, the late B Rutigliano, and M Tamburrini are heartily thanked. Their work as team members (technicians, students, postdoctorate fellows, temporary research associates and researchers) has been and is fundamental for the development of this research over the years. We are grateful to three anonymous reviewers, whose advice has significantly improved the manuscript.

References

  1. Amiconi, G., A. Bertollini, A. Bellelli, M. Coletta, S. G. Condó & M. Brunori, 1985. Evidence for two O2-linked binding sites for polyanions in dromedary hemoglobin. European Journal of Biochemistry 150: 387–393.PubMedCrossRefGoogle Scholar
  2. Balushkin, A. V., 2000. Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei, Perciformes). Journal of Ichthyology 40(Suppl 1): S74–S109.Google Scholar
  3. Bargelloni, L., S. Marcato, L. Zane & T. Patarnello, 2000. Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Systematic Biology 49: 114–129.PubMedCrossRefGoogle Scholar
  4. Betancur-R, R., R.E. Broughton, E.O. Wiley, K. Carpenter, J.A. López, C. Li, N.I. Holcroft, D. Arcila, M. Sanciangco, J.C. Cureton II, F. Zhang, T. Buser, M.A. Campbell, J.A. Ballesteros, A. Roa-Varon, S. Willis, W.C. Borden, T. Rowley, P.C. Reneau, D.J. Hough, G. Lu, T. Grande, G. Arratia & G. Ortí, 2013. The tree of life and a new classification of bony fishes. PLoS (Public Library of Science) Currents Tree of Life. Edition 1. doi: 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288.
  5. Bolognesi, M., G. di Prisco & C. Verde (eds), 2008. Dioxygen Binding and Sensing Proteins. A Tribute to Beatrice and Jonathan Wittenberg. Protein Reviews. Springer Italia: I-261.Google Scholar
  6. Boron, I., R. Russo, L. Boechi, C. H.-C. Cheng, G. di Prisco, D. A. Estrin, C. Verde & A. D. Nadra, 2011. Structure and dynamics of Antarctic fish neuroglobin assessed by computer simulations. IUBMB (International Union of Biochemistry and Molecular Biology). Life 63: 206–213.PubMedGoogle Scholar
  7. Bracegirdle, T. J., W. M. Connolley & J. Turner, 2008. Antarctic climate change over the twenty first century. Journal of Geophysical Research 113: D03103.CrossRefGoogle Scholar
  8. Burmester, T., B. Weich, S. Reinhardt & T. Hankeln, 2000. A vertebrate globin expressed in brain. Nature 407: 520–523.PubMedCrossRefGoogle Scholar
  9. Burmester, T., B. Ebner, B. Weich & T. Hankeln, 2002. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Molecular Biology and Evolution 19: 416–421.PubMedCrossRefGoogle Scholar
  10. Camardella, L., C. Caruso, R. D’Avino, G. di Prisco, B. Rutigliano, M. Tamburrini, G. Fermi & M. F. Perutz, 1992. Haemoglobin of the Antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative. Journal of Molecular Biology 224: 449–460.PubMedCrossRefGoogle Scholar
  11. Camardella, L., R. Di Fraia, A. Antignani, M. A. Ciardiello, G. di Prisco, J. K. Coleman, L. Buchon, J. Guespin & N. J. Russell, 2002. The Antarctic Psychrobacter sp. TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities. Characterisation of the NAD(+)-dependent enzyme. Comparative Biochemistry and Physiology 131A: 559–567.CrossRefGoogle Scholar
  12. Capasso, C., R. Scudiero, C. Capasso, R. D’Avino, L. Camardella, G. di Prisco & E. Parisi, 1997. Purification and characterization of atypical Zn-binding polypeptides from the Antarctic sea urchin Sterechinus neumayeri. In Battaglia, B., J. Valencia & D. W. H. Walton (eds), Proceedings of the SCAR 6th Biology Symposium “Antarctic Communities: Species, Structure and Survival”, Venice:Cambridge University Press: 305–308.Google Scholar
  13. Capasso, C., M. Riggio, R. Scudiero, V. Carginale, G. di Prisco, J. Kay, P. Kille & E. Parisi, 1998. Molecular cloning and sequence determination of a novel aspartic proteinase from Antarctic fish. Biochimica et Biophysica Acta 1387: 457–461.PubMedCrossRefGoogle Scholar
  14. Capasso, C., V. Carginale, M. Riggio, R. Scudiero, P. A. Temussi, F. Trinchella & E. Parisi, 2006. Metal detoxification and homeostasis in Antarctic Notothenioids. A comparative survey on evolution, expression and functional properties of fish and mammal metallothioneins. Reviews in Environmental Science and Biotechnology 5: 253–267.CrossRefGoogle Scholar
  15. Carginale, V., R. Scudiero, C. Capasso, A. Capasso, P. Kille, G. di Prisco & E. Parisi, 1998. Cadmium-induced differential accumulation of metallothionein isoforms in the Antarctic icefish, which exhibits no basal metallothionein protein but high endogenous mRNA levels. Biochemical Journal 332: 475–481.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Caruso, C., B. Rutigliano, M. Romano & G. di Prisco, 1991. The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni. Biochimica et Biophysica Acta 1078: 273–282.PubMedCrossRefGoogle Scholar
  17. Caruso, C., B. Rutigliano, A. Riccio, A. Kunzmann & G. di Prisco, 1992. The amino acid sequence of the single hemoglobin of the high-Antarctic fish Bathydraco marri Norman. Comparative Biochemistry and Physiology 102B: 941–946.Google Scholar
  18. Cattaneo-Vietti, R., M. Chiantore, S. Schiaparelli & G. Albertelli, 2000. Shallow and deep-water mollusc distribution at Terra Nova Bay (Ross Sea, Antarctica). Polar Biology 23: 173–182.CrossRefGoogle Scholar
  19. Chen, L., A. L. DeVries & C.-H. C. Cheng, 1997. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proceedings of the National Academy of Sciences, USA 94: 3811–3816.CrossRefGoogle Scholar
  20. Cheng, C.-H. C., L. Chen, T. J. Near & Y. Jin, 2003. Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin. Molecular Biology and Evolution 20: 1897–1908.PubMedCrossRefGoogle Scholar
  21. Cheng, C.-H. C., G. di Prisco & C. Verde, 2009a. Cold-adapted Antarctic fish: the discovery of neuroglobin in the dominant suborder Notothenioidei. Gene 433: 100–101.PubMedCrossRefGoogle Scholar
  22. Cheng, C.-H. C., G. di Prisco & C. Verde, 2009b. The “icefish paradox”. Which is the task of neuroglobin in Antarctic hemoglobin-less icefish? IUBMB Life 61: 184–188.PubMedCrossRefGoogle Scholar
  23. Christiansen, J. S., 2012. The TUNU-programme: Euro-Arctic marine fishes—diversity and adaptation. In di Prisco, G. & C. Verde (eds), Adaptation and Evolution in Marine Environments—The Impacts of Global Change on Biodiversity, Vol. 1., Series “From Pole to Pole” Springer, Berlin: 35–73.CrossRefGoogle Scholar
  24. Ciardiello, M. A., L. Camardella & G. di Prisco, 1995. Glucose-6-phosphate dehydrogenase from the blood cells of two Antarctic teleosts: correlation with cold adaptation. Biochimica et Biophysica Acta 1250: 76–82.PubMedCrossRefGoogle Scholar
  25. Ciardiello, M. A., L. Camardella, V. Carratore & G. di Prisco, 1997a. Enzymes in Antarctic fish: glucose-6-phosphate dehydrogenase and glutamate dehydrogenase. Comparative Biochemistry and Physiology 118A: 1031–1036.CrossRefGoogle Scholar
  26. Ciardiello, M. A., L. Camardella & G. di Prisco, 1997b. Enzymes in cold-adapted Antarctic fish: glucose-6-phosphate dehydrogenase. In B. Battaglia, J. Valencia & D. W. H. Walton (eds), Proceedings of the SCAR 6th Biology Symposium “Antarctic Communities: Species, Structure and Survival”. Cambridge University Press: 261–265.Google Scholar
  27. Ciardiello, M. A., L. Camardella & G. di Prisco, 1997c. Enzymes of Antarctic fishes: effect of temperature on catalysis. Cybium 21: 443–450.Google Scholar
  28. Ciardiello, M. A., L. Camardella & G. di Prisco, 1999a. Temperature adaptations in enzymes of Antarctic fish. In Margesin, R. & F. Schinner (eds), Cold-Adapted Organisms. Ecology, Physiology, Enzymology and Molecular Biology. Springer, Berlin: 297–304.Google Scholar
  29. Ciardiello, M. A., B. Schmitt, G. di Prisco & G. Hervé, 1999b. Hydrostatic pressure influence on L-glutamate dehydrogenase from the Antarctic fish Chaenocephalus aceratus. Marine Biology 134: 631–636.CrossRefGoogle Scholar
  30. Ciardiello, M. A., L. Camardella, V. Carratore & G. di Prisco, 2000. L-Glutamate dehydrogenase from the Antarctic fish Chaenocephalus aceratus. Primary structure, function and thermodynamic characterisation: relationship with cold adaptation. Biochimica et Biophysica Acta 1543: 11–23.PubMedCrossRefGoogle Scholar
  31. Clarke, A., D. K. A. Barnes & D. A. Hodgson, 2005. How isolated is Antarctica? Trends in Ecology and Evolution 20: 1–3.PubMedCrossRefGoogle Scholar
  32. Cocca, E., M. Ratnayake-Lecamwasam, S. K. Parker, L. Camardella, M. Ciaramella, G. di Prisco & H. W. Detrich III, 1995. Genomic remnants of α-globin genes in the hemoglobinless Antarctic icefishes. Proceedings of the National Academy of Sciences, USA 92: 1817–1821.CrossRefGoogle Scholar
  33. Cocca, E., H. W. Detrich III, S. K. Parker & G. di Prisco, 2000. A cluster of four globin genes from the Antarctic fish Notothenia coriiceps. Journal of Fish Biology 57(Suppl A): 33–50.CrossRefGoogle Scholar
  34. Comiso, J. C. & F. Nishio, 2008. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I and SSMR data. Journal of Geophysical Research 113: C02S07.Google Scholar
  35. Convey, P. R., R. Bindschadler, G. di Prisco, E. Fahrbach, J. Gutt, D. A. Hodgson, P. A. Mayewski, C. P. Summerhayes, J. Turner & the ACCE Consortium, 2009. Antarctic climate change and the environment. Antarctic Science 21: 541–563.CrossRefGoogle Scholar
  36. Coppola, D., S. Abbruzzetti, F. P. Nicoletti, A. Merlino, A. Gambacurta, D. Giordano, D. Barry, B. D. Howes, G. De Sanctis, L. Vitagliano, S. Bruno, G. di Prisco, L. Mazzarella, G. Smulevich, M. Coletta, C. Viappiani, A. Vergara & C. Verde, 2012. ATP regulation of the ligand-binding properties in temperate and cold-adapted haemoglobins. X-ray structure and ligand-binding kinetics in the sub-Antarctic fish Eleginops maclovinus. Molecular BioSystems 8: 3204–3295.CrossRefGoogle Scholar
  37. Coppola, D., D. Giordano, M. Tinajero-Trejo, G. di Prisco, P. Ascenzi, R. K. Poole & C. Verde, 2013. Antarctic bacterial hemoglobin and its role in the protection against nitrogen reactive species. Biochimica et Biophysica Acta 1834: 923–931.Google Scholar
  38. Corda, M., M. Tamburrini, M. C. De Rosa, M. T. Sanna, A. Fais, A. Olianas, M. Pellegrini, B. Giardina & G. di Prisco, 2003. Whale (Balaenoptera physalus) haemoglobin: primary structure, functional characterisation and computer modelling studies. Comparative Biochemistry and Physiology 134B: 53–62.CrossRefGoogle Scholar
  39. Cziko, P. A., A. L. DeVries, C. W. Evans & C.-H. C. Cheng, 2014. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. Proceedings of the National Academy of Sciences, USA 111: 14583–14588.CrossRefGoogle Scholar
  40. Davail, S., G. Feller, E. Narinx & C. Gerday, 1994. Cold adaptation of proteins. Journal of Biological Chemistry 269: 17448–17453.PubMedGoogle Scholar
  41. D’Avino, R., C. Caruso, M. E. Schininà, B. Rutigliano, M. Romano, L. Camardella, F. Bossa, D. Barra & G. di Prisco, 1989. The amino acid sequence of the α- and ß-chains of the two hemoglobins of the Antarctic fish Notothenia coriiceps neglecta. FEBS Letters 250: 53–56.PubMedCrossRefGoogle Scholar
  42. D’Avino, R., A. Fago, A. Kunzmann & G. di Prisco, 1992. The primary structure and O2-binding properties of the single haemoglobin of the high-Antarctic fish Aethotaxis mitopteryx DeWitt. Polar Biology 12: 135–140.CrossRefGoogle Scholar
  43. D’Avino, R., C. Caruso, M. Tamburrini, M. Romano, B. Rutigliano, P. Polverino de Laureto, L. Camardella, V. Carratore & G. di Prisco, 1994. Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. Journal of Biological Chemistry 269: 9675–9681.PubMedGoogle Scholar
  44. de Pascale, D., A. M. Cusano, F. Autore, E. Parrilli, G. di Prisco, G. Marino & M. L. Tutino, 2008. The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12: 311–323.PubMedCrossRefGoogle Scholar
  45. Dettaï, A., G. di Prisco, G. Lecointre, E. Parisi & C. Verde, 2008. Inferring evolution of fish proteins: the globin case study. Methods in Enzymology 436: 535–566.Google Scholar
  46. Dettaï, A., M. Berkani, A.-C. Lautredou, A. Couloux, G. Lecointre, C. Ozouf-Costaz & C. Gallut, 2012. Tracking the elusive monophyly of nototheniid fishes (Teleostei) with multiple mitochondrial and nuclear markers. Marine Genomics 8: 49–58.PubMedCrossRefGoogle Scholar
  47. DeVries, A. L. & C.-H. C. Cheng, 2005. Antifreeze proteins and organismal freezing avoidance in polar fishes. In Farrell, A. P. & J. F. Steffensen (eds), The Physiology of Polar Fishes, Vol. 22., Fish Physiology Elsevier Academic Press, San Diego: 155–201.CrossRefGoogle Scholar
  48. Di Fraia, R., V. Wilquet, M. A. Ciardiello, V. Carratore, A. Antignani, L. Camardella, N. Glansdorff & G. di Prisco, 2000. NADP+-dependent glutamate dehydrogenase in the Antarctic psychrotolerant bacterium Psychrobacter sp. TAD1. European Journal of Biochemistry 267: 121–131.PubMedCrossRefGoogle Scholar
  49. di Prisco, G. (ed.), 1991. Life under Extreme Conditions—Biochemical Adaptations. Springer, Berlin: I-144.Google Scholar
  50. di Prisco, G., 1997a. Physiological and biochemical adaptations in fish to a cold marine environment. In Battaglia, B., J. Valencia & D. W. H. Walton (eds), Proceedings of the SCAR 6th Biology Symposium “Antarctic Communities: Species, Structure and Survival”, Venice. Cambridge University Press: 251–260.Google Scholar
  51. di Prisco, G., 1997b. Fishes of the Antarctic Ocean: relationships linking ecology, lifestyle and adaptive evolution. Comparative Biochemistry and Physiology 118A: 975–1101.CrossRefGoogle Scholar
  52. di Prisco, G., 2000. Life style and biochemical adaptation in Antarctic fishes. Journal of Marine Systems 27: 253–265.CrossRefGoogle Scholar
  53. di Prisco, G., 2003. Adaptation and evolution in the Antarctic: an exciting challenge for biology. In Huiskes, A. H. L., W. W. C. Gieskes, J. Rozema, R. M. L. Schorno, S. M. van der Vies & W. J. Wolff (eds), Proceedings of the SCAR 8th International Biology Symposium “Antarctic Biology in A Global Context”. Backhuys Publishers: 87–95.Google Scholar
  54. di Prisco, G. & P. Convey, 2012. The origin of the SCAR programme “Evolution and Biodiversity in the Antarctic”. In di Prisco, G. & C. Verde (eds), Adaptation and Evolution in Marine Environments—The Impacts of Global Change on Biodiversity, Vol. 1., Series “From Pole to Pole” Springer, Berlin: 183–195.CrossRefGoogle Scholar
  55. di Prisco, G. & B. Giardina, 1996. Temperature adaptation: molecular aspects. In Johnston, I. A. & A. F. Bennett (eds), Society for Experimental Biology Seminar Series 59: Animals and Temperature. Phenotypic and Evolutionary Adaptation. Cambridge University Press, Cambridge: 23–51.CrossRefGoogle Scholar
  56. di Prisco, G. & C. Verde, 2006. Predicting the impacts of climate change on the evolutionary adaptations of polar fish. Reviews in Environmental Science and Biotechnology 5: 309–321.CrossRefGoogle Scholar
  57. di Prisco, G. & C. Verde (eds), 2012. Adaptation and Evolution in Marine Environments—The Impacts of Global Change on Biodiversity, Vol 1, Series “From Pole to Pole”. Springer, Berlin: i-222.Google Scholar
  58. di Prisco, G., B. Maresca & B. Tota (eds), 1988. Proceedings of the International Conference on Marine Biology of Antarctica, Ravello 1986. Comparative Biochemistry and Physiology 90B: 459–637.Google Scholar
  59. di Prisco, G., R. D’Avino, L. Camardella, C. Caruso, M. Romano & B. Rutigliano, 1990. Structure and function of hemoglobin in Antarctic fishes and evolutionary implications. Polar Biology 10: 269–274.CrossRefGoogle Scholar
  60. di Prisco, G., B. Maresca & B. Tota (eds), 1991a. Biology of Antarctic Fish. Springer/Heidelberg, New York: I-292.Google Scholar
  61. di Prisco, G., S. G. Condò, M. Tamburrini & B. Giardina, 1991b. O2 transport in extreme environments. Trends in Biochemical Sciences 16: 471–474.PubMedCrossRefGoogle Scholar
  62. di Prisco, G., J. A. Macdonald & M. Brunori, 1992. Antarctic fishes survive exposure to carbon monoxide. Experientia 48: 473–475.PubMedCrossRefGoogle Scholar
  63. di Prisco, G., S. Focardi & P. Luporini (eds), 1997. Proceedings of the 3rd Meeting Biology in Antarctica. Camerino University Press: 1–390.Google Scholar
  64. di Prisco, G., E. Pisano & A. Clarke (eds), 1998. Fishes of Antarctica. A Biological Overview. Springer, Berlin: I-363.Google Scholar
  65. di Prisco, G., R. D’Avino & M. Tamburrini, 1999. Structure and function of hemoglobins from Antarctic organisms: the search for correlations with adaptive evolution. In Margesin, R. & F. Schinner (eds), Cold-adapted Organisms. Ecology, Physiology, Enzymology and Molecular Biology. Springer/Heidelberg, Berlin: 239–253.Google Scholar
  66. di Prisco, G., V. Carratore, E. Cocca, A. Riccio & M. Tamburrini, 2000a. Molecular structure and functional adaptations of hemoglobins from Antarctic marine organisms. Italian Journal of Zoology suppl 1: 37–46.CrossRefGoogle Scholar
  67. di Prisco, G., B. Giardina & R. E. Weber (eds), 2000b. Hemoglobin Function in Vertebrates. Molecular Adaptation in Extreme and Temperate Environments. Springer Italia: I-123.Google Scholar
  68. di Prisco, G., E. Cocca, S. K. Parker & H. W. Detrich III, 2002. Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295: 185–191.PubMedCrossRefGoogle Scholar
  69. di Prisco, G., J. T. Eastman, D. Giordano, E. Parisi & C. Verde, 2007. The evolutionary adaptations in Antarctic marine organisms. Gene 398: 143–155.PubMedCrossRefGoogle Scholar
  70. di Prisco, G., P. Luporini, L. Tutino & C. Verde (eds), 2009. The Polar and Alpine Environments: Molecular and Evolutionary Adaptations in Prokaryotic and Eukaryotic Organisms. Marine Genomics 2: iii-80.Google Scholar
  71. di Prisco, G., P. Convey, J. Gutt, D. Cowan, K. Conlan & C. Verde, 2012a. Understanding and protecting the world’s biodiversity: the role and legacy of the SCAR programme “Evolution and Biodiversity in the Antarctic”. In Verde, C., P. Convey & G. di Prisco (eds), Molecular and Genetic Advances to Understanding Evolution and Biodiversity in the Polar Regions. Marine Genomics 8: 3–8.Google Scholar
  72. di Prisco, G., D. Giordano, R. Russo & C. Verde, 2012b. The challenges of low temperature in the evolution of bacteria. In di Prisco, G. & C. Verde (eds), Adaptation and Evolution in Marine Environments—The Impacts of Global Change on Biodiversity, Vol. 1., Series “From Pole to Pole” Springer, Berlin: 183–195.CrossRefGoogle Scholar
  73. Eastman, J. T., 1993. Antarctic Fish Biology: Evolution in a Unique Environment. Academic Press, San Diego.Google Scholar
  74. Eastman, J. T., 2005. The nature of the diversity of Antarctic fishes. Polar Biology 28: 93–107.CrossRefGoogle Scholar
  75. Eastman, J. T. & A. R. McCune, 2000. Fishes on the Antarctic continental shelf: evolution of a marine species flock? Journal of Fish Biology 57(Suppl A): 84–102.Google Scholar
  76. Eastman, J. T., J. Gutt & G. di Prisco (eds), 2004. Adaptive Evolution of Antarctic Marine Organisms. Antarctic Science 16: 1–89.Google Scholar
  77. Eschmeyer, W. N. (ed.), 2014. Catalog of Fishes: Genera, Species, References. Electronic version. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp).
  78. Everson, I. & R. Ralph, 1968. Blood analyses of some Antarctic fish. British Antarctic Survey Bulletin 15: 59–62.Google Scholar
  79. Fago, A., R. D’Avino & G. di Prisco, 1992. The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic Ocean. European Journal of Biochemistry 210: 963–970.PubMedCrossRefGoogle Scholar
  80. Faranda, F. M., L. Guglielmo & A. Ianora (eds), 2000. Ross Sea Ecology—Italiantartide Expeditions (1987–1995). Springer/Heidelberg, Berlin: 1–258.Google Scholar
  81. Feller, G., T. Lonhienne, C. Deroanne, C. Libioulle, J. Van Beeumen & C. Gerday, 1992. Purification, characterization, and nucleotide sequence of the thermolabile α-amylase from the Antarctic psychrotroph Alteromonas haloplanctis A23. Journal of Biological Chemistry 267: 217–5221.Google Scholar
  82. Fukuchi, M., D. Hodgson, G. di Prisco, G. Hosie, P. Convey & D. Bergstrom (eds), 2010. Antarctic Biology in the 21st Century—Advances in and beyond IPY. Polar Science 4: 92-431.Google Scholar
  83. Giangiacomo, L., R. D’Avino, G. di Prisco & E. Chiancone, 2001. Hemoglobin of the Antarctic fishes Trematomus bernacchii and Trematomus newnesi: structural basis for the increased stability of the liganded tetramer relative to human hemoglobin. Biochemistry 40: 3062–3068.PubMedCrossRefGoogle Scholar
  84. Giordano, D., L. Grassi, E. Parisi, L. Bargelloni, G. di Prisco & C. Verde, 2006. Embryonic β-globin in the non-Antarctic notothenioid fish Cottoperca gobio (Bovichtidae). Polar Biology 30: 75–82.CrossRefGoogle Scholar
  85. Giordano, D., E. Parrilli, A. Dettaï, R. Russo, G. Barbiero, G. Marino, G. Lecointre, G. di Prisco, L. Tutino & C. Verde, 2007a. The truncated hemoglobins in the Antarctic psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125. Gene 398: 69–77.PubMedCrossRefGoogle Scholar
  86. Giordano, D., A. Vergara, H.-C. Lee, J. Peisach, M. Balestrieri, L. Mazzarella, E. Parisi, G. di Prisco & C. Verde, 2007b. Hemoglobin structure/function and globin-gene evolution in the Arctic fish Liparis tunicatus. Gene 406: 58–68.PubMedCrossRefGoogle Scholar
  87. Giordano, D., L. Boechi, A. Vergara, M. A. Martí, U. Samuni, D. Dantsker, L. Grassi, D. A. Estrin, J. M. Friedman, L. Mazzarella, G. di Prisco & C. Verde, 2009. The hemoglobins of the sub-Antarctic fish Cottoperca gobio, a phyletically basal species. Oxygen-binding equilibria, kinetics and molecular dynamics. FEBS Journal 276: 2266–2277.PubMedCrossRefGoogle Scholar
  88. Giordano, D., R. Russo, D. Coppola, G. di Prisco & C. Verde, 2010. Molecular adaptations in hemoglobins of notothenioid fishes. Journal of Fish Biology 76: 301–318.PubMedCrossRefGoogle Scholar
  89. Giordano, D., R. Russo, C. Ciaccio, B. D. Howes, G. di Prisco, M. C. Marden, G. H.-B. Hoa, G. Smulevich, M. Coletta & C. Verde, 2011. Ligand- and proton-linked conformational changes of the ferrous 2/2 hemoglobin of Pseudoalteromonas haloplanktis TAC125. IUBMB Life 63: 566–573.PubMedCrossRefGoogle Scholar
  90. Giordano, D., I. Boron, S. Abbruzzetti, W. Van Leuven, F. P. Nicoletti, F. Forti, S. Bruno, C.-H. C. Cheng, L. Moens, G. di Prisco, A. D. Nadra, D. Estrin, G. Smulevich, S. Dewilde, C. Viappiani & C. Verde, 2012a. Biophysical characterisation of neuroglobin of the icefish, a natural knockout for hemoglobin and myoglobin. Comparison with human neuroglobin. PLoS ONE 7(12): e44508.PubMedCentralPubMedCrossRefGoogle Scholar
  91. Giordano, D., R. Russo, G. di Prisco & C. Verde, 2012b. Molecular adaptations in Antarctic fish and marine microorganisms. Marine Genomics 6: 1–6.PubMedCrossRefGoogle Scholar
  92. Giordano, D., D. Coppola, R. Russo, M. Tinajero-Trejo, G. di Prisco, F. Lauro, P. Ascenzi & C. Verde, 2013. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. In Poole, R. K. (ed.), Advances in Microbial Physiology, Vol. 63. Academic Press, Amsterdam: 329–389.Google Scholar
  93. Giordano, D., R. Russo, D. Coppola, G. Altomonte, G. di Prisco, S. Bruno & C. Verde, 2015. “Cool” adaptations to cold environments: globins in Notothenioidei (Actynopterygii, Perciformes). Hydrobiologia. doi: 10.1007/s10750-015-2306-1.Google Scholar
  94. Gutt, J., B. Adams, T. Bracegirdle, D. Cowan, V. Cummings, G. di Prisco, R. Gradinger, E. Isla, T. McIntyre, E. Murphy, L. S. Peck, I. Schloss, C. Smith, C. Suckling, A. Takahashi, C. Verde, D. H. Wall & J. Xavier, 2012. Antarctic Thresholds—Ecosystem Resilience and Adaptation: a new SCAR biology programme. Polarfoschung 82: 147–150.Google Scholar
  95. Holland, H. D., 2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B361: 903–916.CrossRefGoogle Scholar
  96. Howes, B. D., D. Giordano, L. Boechi, R. Russo, S. Mucciacciaro, C. Ciaccio, F. Sinibaldi, M. Fittipaldi, M. A. Martí, D. A. Estrin, G. di Prisco, M. Coletta, C. Verde & G. Smulevich, 2011. The peculiar heme pocket of the 2/2 hemoglobin of cold-adapted Pseudoalteromonas haloplanktis TAC125. Journal of Biological Inorganic Chemistry 16: 299–311.PubMedCrossRefGoogle Scholar
  97. Kahn, A. A., X. O. Mao, S. Banwait, K. Jin & D. A. Greenberg, 2007. Neuroglobin attenuates β-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo. Proceedings of the National Academy of Science, USA 104: 19114–19119.CrossRefGoogle Scholar
  98. Kennicutt II, M. C., S. L. Chown, J. J. Cassano, D. Liggett, R. Massom, L. S. Peck, S. R. Rintoul, J. W. V. Storey, D. G. Vaughan, T. J. Wilson & W. J. Sutherland, 2014. Six priorities for Antarctic science. Nature 512: 23–25.PubMedCrossRefGoogle Scholar
  99. Kunzmann, A., C. Caruso & G. di Prisco, 1991. Haematological studies on a high-Antarctic fish: Bathydraco marri Norman. Journal of Experimental Marine Biology and Ecology 152: 243–255.CrossRefGoogle Scholar
  100. Kunzmann, A., A. Fago, R. D’Avino & G. di Prisco, 1992. Haematological studies on Aethotaxis mitopteryx DeWitt, a high-Antarctic fish with a single haemoglobin. Polar Biology 12: 141–145.CrossRefGoogle Scholar
  101. Lecointre, G., 2012. Phylogeny and systematics of Antarctic teleosts: methodological and evolutionary issues. In di Prisco, G. & C. Verde (eds), Adaptation and Evolution in Marine Environments—The Impacts of Global Change on Biodiversity, Vol. 1., Series “From Pole to Pole” Springer, Berlin: 97–117.CrossRefGoogle Scholar
  102. Lewis, G., S. Aitken, P. Dang, D. Hik, T. Kulkarni, S. Coulson, I. Jónsdóttir, T. Barry, M. Gill, P. Convey & G. di Prisco (eds), 2012. The Impacts of Climate Change on Circumpolar Biodiversity. Biodiversity 13: iii-264.Google Scholar
  103. Lo Giudice, A., L. Michaud, D. de Pascale, M. De Domenico, G. di Prisco, R. Fani & V. Bruni, 2006. Lipolytic activity of Antarctic cold-adapted marine bacteria (Terra Nova Bay, Ross Sea). Journal of Applied Microbiology 101: 1039–1048.PubMedCrossRefGoogle Scholar
  104. Marinakis, P., M. Tamburrini, V. Carratore & G. di Prisco, 2003. Unique features of the hemoglobin system of the Antarctic notothenioid fish Gobionotothen gibberifrons. European Journal of Biochemistry 270: 3981–3987.PubMedCrossRefGoogle Scholar
  105. Mazzarella, L., R. D’Avino, G. di Prisco, C. Savino, L. Vitagliano, P. C. E. Moody & A. Zagari, 1999. Crystal structure of Trematomus newnesi haemoglobin re-opens the Root effect question. Journal of Moleculal Biology 287: 897–906.CrossRefGoogle Scholar
  106. Mazzarella, L., G. Bonomi, M. Lubrano, A. Merlino, A. Riccio, A. Vergara, L. Vitagliano, C. Verde & G. di Prisco, 2006a. Minimal structural requirements for Root effect: the crystal structure of the cathodic hemoglobin isolated from the Antarctic fish Trematomus newnesi. Proteins, Structure, Function Bioinformatics 62: 316–321.CrossRefGoogle Scholar
  107. Mazzarella, L., A. Vergara, L. Vitagliano, A. Merlino, G. Bonomi, S. Scala, C. Verde & G. di Prisco, 2006b. High-resolution crystal structure of deoxy haemoglobin from Trematomus bernacchii at different pH values: the role of histidine residues in modulating the strength of the Root effect. Proteins, Structure, Function, Bioinformatics 65: 490–498.PubMedCrossRefGoogle Scholar
  108. Médigue, C., E. Krin, G. Pascal, V. Barbe, A. Bernsel, P. N. Bertin, F. Cheung, S. Cruveiller, S. D’Amico, A. Duilio, G. Fang, G. Feller, C. Ho, S. Mangenot, G. Marino, J. Nilsson, E. Parrilli, E. P. C. Rocha, Z. Rouy, A. Sekowska, M. L. Tutino, D. Vallenet, G. von Heijne & A. Danchin, 2005. Coping with cold: the genome of the versatile marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research 15: 1325–1335.PubMedCentralPubMedCrossRefGoogle Scholar
  109. Merlino, A., L. Vitagliano, B. D. Howes, C. Verde, G. di Prisco, G. Smulevich, F. Sica & A. Vergara, 2009. Combined crystallographic and spectroscopic analysis of Trematomus bernacchii hemoglobin highlights analogies and differences in the peculiar oxidation pathway of Antarctic fish hemoglobins. Biopolymers 91: 1117–1125.PubMedCrossRefGoogle Scholar
  110. Merlino, A., L. Vitagliano, A. Balsamo, F. Nicoletti, B. Howes, D. Giordano, D. Coppola, G. di Prisco, C. Verde, G. Smulevich, L. Mazzarella & A. Vergara, 2010. Crystallization, preliminary X-ray diffraction studies and Raman microscopy of the major hemoglobin from the sub-Antarctic fish Eleginops maclovinus in the carbomonoxy form. Acta Crystallographica Section F 66: 1536–1540.CrossRefGoogle Scholar
  111. Moens, L., M. Bolognesi, G. di Prisco & C. Verde (eds), 2007. XIVth International Conference on Dioxygen Binding and Sensing Proteins. Gene 398: 1–249.Google Scholar
  112. Monod, J., J. Wyman & J. P. Changeux, 1965. On the nature of allosteric transitions: a plausible model. Journal of Molecular Biology 12: 88–118.PubMedCrossRefGoogle Scholar
  113. Natoli, G., L. Calabrese, C. Capo, P. O’Neill & G. di Prisco, 1990. Icefish (Chaenocephalus aceratus) Cu, Zn superoxide dismutase. Conservation of the enzyme properties in extreme adaptation. Comparative Biochemistry and Physiology 95B: 29–33.Google Scholar
  114. Near, T. J., J. J. Pesavento & C.-H. C. Cheng, 2004. Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Molecular Phylogenetics and Evolution 32: 881–891.PubMedCrossRefGoogle Scholar
  115. Near, T. J., S. W. Parker & H. W. Detrich III, 2006. A genomic fossil reveals key steps in hemoglobin loss by the Antarctic icefishes. Molecular Biology and Evolution 23: 2008–2016.PubMedCrossRefGoogle Scholar
  116. Near, T. J. & C.-H. C. Cheng, 2008. Phylogenetics of notothenioid fishes (Teleostei: Acanthomorpha): inferences from mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 47: 832–840.PubMedCrossRefGoogle Scholar
  117. Near, T. J., A. Dornburg, K. L. Kuhn, J. T. Eastman, J. N. Pennington, T. Patarnello, L. Zane, D. A. Fernández & C. D. Jones, 2012. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proceedings of the National Academy of Science, USA 109: 3434–3439.CrossRefGoogle Scholar
  118. Near, T. J., A. Dornburg, R. I. Eytan, B. P. Keck, W. L. Smith, K. L. Kuhn, J. A. Moore, S. A. Price, F. T. Burbrink, M. Friedman & P. C. Wainwright, 2013. Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proceedings of the National Academy of Science, USA 110: 12738–12743.CrossRefGoogle Scholar
  119. Negrisolo, E., L. Bargelloni, T. Patarnello, C. Ozouf-Costaz, E. Pisano, G. di Prisco & C. Verde, 2008. Comparative and evolutionary genomics of globin genes in fish. Methods in Enzymology 436: 511–538.PubMedCrossRefGoogle Scholar
  120. Nicolaus, B., F. Marsiglia, E. Esposito, A. Trincone, L. Lama, R. Sharp, G. di Prisco & A. Gambacorta, 1991. Isolation of five strains of thermophilic eubacteria in Antarctica. Polar Biology 11: 425–429.CrossRefGoogle Scholar
  121. Nicolaus, B., F. Marsiglia, E. Esposito, L. Lama, A. Trincone, G. di Prisco, A. Gambacorta, M. J. Valderrama & W. D. Grant, 1992. Isolation of extremely halotolerant cocci from Antarctica. FEMS Microbiology Letters 99: 145–150.CrossRefGoogle Scholar
  122. Nicolaus, B., L. Lama, E. Esposito, M. C. Manca, G. di Prisco & A. Gambacorta, 1996. “Bacillus thermoantarcticus” sp. nov., from Mount Melbourne, Antarctica: a novel thermophilic species. Polar Biology 16: 101–104.Google Scholar
  123. Ørbaek, J. B., K. Holmén, R. Neuber, H. P. Plag, B. Lefauconnier, G. di Prisco & H. Ito (eds), 2002. The Changing Physical Environment, 6th Ny-Ålesund International Scientific Seminar: 1–215.Google Scholar
  124. Ørbaek, J. B., R. Neuber, B. Lefauconnier & G. di Prisco (eds), 2003. The Changing Physical Environment of Ny-Ålesund. Svalbard. Physics and Chemistry of the Earth 28: 1175–1278.Google Scholar
  125. Patarnello, T., C. Verde, G. di Prisco, L. Bargelloni & L. Zane, 2011. How will fish that evolved at constant sub-zero temperatures cope with global warming? Notothenioids as a case study. BioEssays 33: 260–268.PubMedCrossRefGoogle Scholar
  126. Peck, L. S., 2011. Organism responses to environmental changes. Marine Genomics 4: 237–243.PubMedCrossRefGoogle Scholar
  127. Peck, L. S., S. A. Morley, J. Richard & M. S. Clark, 2014. Acclimation and thermal tolerance in Antarctic marine ectotherms. Journal of Experimental Biology 217: 16–22.PubMedCrossRefGoogle Scholar
  128. Peck, L. S., M. A. S. Thorne, J. I. Hoffman, S. A. Morley & M. S. Clark, 2015. Variability among individuals is generated at the gene expression level. Ecology. doi: 10.1890/14-0726.1.PubMedGoogle Scholar
  129. Perutz, M. F., 1983. Species adaptation in a protein molecule. Molecular Biology and Evolution 1: 1–28.PubMedGoogle Scholar
  130. Perutz, M. F., G. Fermi, B. Luisi, B. Shanan & R. C. Liddington, 1987. Stereochemistry of cooperative mechanisms in hemoglobin. Accounts of Chemical Research 20: 309–321.CrossRefGoogle Scholar
  131. Pörtner, H.-O., G. A. Somero & L. S. Peck, 2007. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. In Rogers, A. & E. Murphy (eds), Antarctic Ecology, from Genes to Ecosystems. Phylosophical Transactions of the Royal Society 362: 2233–2258.Google Scholar
  132. Riccio, A., M. Tamburrini, V. Carratore & G. di Prisco, 2000a. Functionally distinct hemoglobins of the cryopelagic Antarctic teleost Pagothenia borchgrevinki. Journal of Fish Biology 57: 20–32.CrossRefGoogle Scholar
  133. Riccio, A., M. Tamburrini, B. Giardina & G. di Prisco, 2000b. Molecular modelling analysis of the haemoglobins of the Antarctic bird Catharacta maccormicki. The hypothesis of a second phosphate binding site. In di Prisco, G., B. Giardina & R. E. Weber (eds), Hemoglobin Function in Vertebrates. Molecular Adaptations in Extreme and Temperate Environments. Springer/Heidelberg, Milan: 83–89.CrossRefGoogle Scholar
  134. Riccio, A., M. Tamburrini, B. Giardina & G. di Prisco, 2001. Molecular dynamics analysis of a second phosphate site in the hemoglobins of the seabird, South Polar Skua. Is there a site-site migratory mechanism along the central cavity? Biophysical Journal 81: 1938–1946.PubMedCentralPubMedCrossRefGoogle Scholar
  135. Riccio, A., L. Vitagliano, G. di Prisco, A. Zagari & L. Mazzarella, 2002. The crystal structure of a tetrameric hemoglobin in a partial hemichrome state. Proceedings of the National Academy of Science, USA 99: 9801–9806.CrossRefGoogle Scholar
  136. Riccio, A., G. Mangiapia, D. Giordano, A. Flagiello, R. Tedesco, S. Bruno, A. Vergara, L. Mazzarella, G. di Prisco, P. Pucci, L. Paduano & C. Verde, 2011. Polymerisation of hemoglobins in Arctic fish: Lycodes reticulatus and Gadus morhua. IUBMB Life 63: 346–354.PubMedCrossRefGoogle Scholar
  137. Rizzello, A., M. A. Ciardiello, R. Acierno, V. Carratore, T. Verri, G. di Prisco, C. Storelli & M. Maffia, 2007. Biochemical characterization of a S-glutathionylated carbonic anhydrase isolated from gills of the Antarctic icefish Chionodraco hamatus. Protein Journal 26: 335–348.PubMedCrossRefGoogle Scholar
  138. Rodhouse, P. G., E. Fanta, G. di Prisco & J.-C. Hureau (eds), 2000. Evolutionary Biology of Antarctic Organisms. Antarctic Science 12: 257–393.Google Scholar
  139. Russo, R., D. Giordano, A. Riccio, G. di Prisco & C. Verde, 2010a. Cold-adapted bacteria and the globin case study in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Marine Genomics 3: 125–131.PubMedCrossRefGoogle Scholar
  140. Russo, R., A. Riccio, G. di Prisco, C. Verde & D. Giordano, 2010b. Molecular adaptations in Antarctic fish and bacteria. Polar Science 4: 245–256.CrossRefGoogle Scholar
  141. Russo, R., D. Giordano, G. di Prisco, G. H.-B. Hoa, M. C. Marden, C. Verde & L. Kiger, 2013. Ligand-rebinding kinetics of 2/2 hemoglobin from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Biochimica et Biophysica Acta 1834: 1932–1938.PubMedCrossRefGoogle Scholar
  142. Ruud, J. T., 1954. Vertebrates without erythrocytes and blood pigment. Nature 173: 848–850.PubMedCrossRefGoogle Scholar
  143. Scher, H. D. & E. E. Martin, 2006. Timing and climatic consequences of the opening of Drake Passage. Science 312: 428–430.PubMedCrossRefGoogle Scholar
  144. Scudiero, R., P. P. De Prisco, L. Camardella, R. D’Avino, G. di Prisco & E. Parisi, 1992a. Apparent deficiency of metallothionein in the liver of the Antarctic icefish Chionodraco hamatus. Identification and isolation of a zinc-containing protein unlike metallothionein. Comparative Biochemistry and Physiology 103B: 201–207.Google Scholar
  145. Scudiero, R., P. De Prisco, C. Capasso, L. Camardella, R. D’Avino, G. di Prisco & E. Parisi, 1992b. Differential expression of metal-binding proteins in sea urchin. Comparison between Antarctic and temperate species. In Wegmann, R. J. & M. A. Wegmann (eds), Recent Advances in Cellular and Molecular Biology. Peeters Press, Leuven: 351–355.Google Scholar
  146. Scudiero, R., V. Carginale, M. Riggio, C. Capasso, A. Capasso, P. Kille, G. di Prisco & E. Parisi, 1997. Difference in hepatic metallothionein content in Antarctic red-blooded and haemoglobinless fish: undetectable metallothionein levels in haemoglobinless fish is accompanied by accumulation of untranslated metallothionein mRNA. Biochemical Journal 322: 207–211.PubMedCentralPubMedCrossRefGoogle Scholar
  147. Scudiero, R., C. Verde, V. Carginale, P. Kille, C. Capasso, G. di Prisco & E. Parisi, 2000. Tissue-specific regulation of metallothionein and metallothionein mRNA accumulation in the Antarctic notothenioid Notothenia coriiceps. Polar Biology 23: 17–23.CrossRefGoogle Scholar
  148. Sidell, B. D. & K. M. O’Brien, 2006. When bad thing happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. Journal of Experimental Biology 209: 1791–1802.PubMedCrossRefGoogle Scholar
  149. Smith Jr, W. O., D. G. Ainley, K. R. Arrigo & M. S. Dinniman, 2014. The oceanography and ecology of the Ross Sea. Annual Review of Marine Science. 6: 469–487.PubMedCrossRefGoogle Scholar
  150. Somero, G. N., 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. Journal of Experimental Biology 213: 912–920.PubMedCrossRefGoogle Scholar
  151. Somero, G. N., 2012. The physiology of global change: linking patterns to mechanisms. Annual Review of Marine Science 4: 39–61.PubMedCrossRefGoogle Scholar
  152. Stam, W. T., J. J. Beintema, R. D’Avino, M. Tamburrini & G. di Prisco, 1997. Molecular evolution of Antarctic fishes (Notothenioidei). Journal of Molecular Evolution 45: 437–445.PubMedCrossRefGoogle Scholar
  153. Stam, W. T., J. J. Beintema, R. D’Avino, M. Tamburrini, E. Cocca & G. di Prisco, 1998. Evolutionary studies on teleost hemoglobin sequences. In di Prisco, G., E. Pisano & A. Clarke (eds), Fishes of Antarctica. A Biological Overview. Springer, Milano: 355–359.CrossRefGoogle Scholar
  154. Stammerjohn, S. E., R. Massom, D. Rind & D. G. Martinson, 2012. Regions of rapid sea ice change: an interhemispheric seasonal comparison. Geophysical Research Letters 39: L06501.CrossRefGoogle Scholar
  155. Sun, K., L. Camardella, G. di Prisco & G. Hervé, 1998. Properties of aspartate transcarbamylase from TAD1, a psychrophilic bacterial strain isolated from Antarctica. FEMS Microbiology Letters 164: 375–382.PubMedCrossRefGoogle Scholar
  156. Tamburrini, M., A. Brancaccio, R. Ippoliti & G. di Prisco, 1992. The amino acid sequence and O2-binding properties of the single hemoglobin of the cold-adapted Antarctic teleost Gymnodraco acuticeps. Archives of Biochemistry and Biophysics 292: 295–302.PubMedCrossRefGoogle Scholar
  157. Tamburrini, M., S. G. Condò, G. di Prisco & B. Giardina, 1994. Adaptation to extreme environments: Structure-function relationships in Emperor penguin haemoglobin. Journal of Molecular Biology 237: 615–621.PubMedCrossRefGoogle Scholar
  158. Tamburrini, M., R. D’Avino, A. Fago, V. Carratore, A. Kunzmann & G. di Prisco, 1996. The unique hemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost. Structure and function of the three components. Journal of Biological Chemistry 271: 23780–23785.PubMedCrossRefGoogle Scholar
  159. Tamburrini, M., M. Romano, V. Carratore, A. Kunzmann, M. Coletta & G. di Prisco, 1998. The hemoglobins of Antarctic fishes Artedidraco orianae and Pogonophryne scotti. Amino acid sequence, lack of cooperativity, and ligand binding properties. Journal of Biological Chemistry 273: 32452–32459.PubMedCrossRefGoogle Scholar
  160. Tamburrini, M., M. Romano, B. Giardina & G. di Prisco, 1999. The myoglobin of Emperor penguin (Aptenodytes forsteri): amino acid sequence and functional adaptation to extreme conditions. Comparative Biochemistry and Physiology 122B: 235–240.CrossRefGoogle Scholar
  161. Tamburrini, M., B. Giardina & G. di Prisco, 2000a. Hemoglobin and myoglobin of Emperor Penguin: an example of molecular adaptation to extreme conditions. In Davison, W., C. Howard-Williams & P. Broady (eds), Proceedings of the SCAR 7th International Biology Symposium “Antarctic Ecosystems: Models for Wider Ecological Understanding”. The Caxton Press, Christchurch: 149–153.Google Scholar
  162. Tamburrini, M., A. Riccio, M. Romano, B. Giardina & G. di Prisco, 2000b. Structural and functional analysis of two haemoglobins of the Antarctic seabird Catharacta maccormicki. Characterization of an additional phosphate binding site by molecular modelling. European Journal of Biochemistry 267: 6089–6098.PubMedCrossRefGoogle Scholar
  163. Thomson, M. R. A., 2004. Geological and palaeoenvironmental history of the Scotia Sea region as a basis for biological interpretation. Deep-Sea Research Part II 51: 1467–1487.CrossRefGoogle Scholar
  164. Tota, B., D. Amelio, F. Garofalo & D. Pellegrino, 2012. Evolutionary adaptation and disaptation in the cold: the icefish paradigm. In di Prisco, G. & C. Verde (eds), Adaptation and Evolution in Marine Environments—The Impacts of Global Change on Biodiversity, Vol. 1., Series “From Pole to Pole” Springer, Berlin: 121–141.CrossRefGoogle Scholar
  165. Turner, J., R. Bindschadler, P. Convey, G. di Prisco, E. Fahrbach, J. Gutt, D. A. Hodgson, P. A. Mayewski & C. P. Summerhayes (eds), 2009a. Antarctic Climate Change and the Environment. SCAR Scott Polar Research Institute, Cambridge: 1–526, www.scar.org.
  166. Turner, J., J. C. Comiso, G. J. Marshall, T. A. Lachlan-Cope, T. J. Bracegirdle, T. Maksym, M. P. Meredith, Z. Wang & A. Orr, 2009b. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophysics Research Letters. doi: 10.1029/2009GL037524.Google Scholar
  167. Tutino, M. L., G. di Prisco, G. Marino & D. de Pascale, 2009. Cold-adapted esterases and lipases: from fundamentals to application. Protein and Peptide Letters 16: 1172–1180.PubMedCrossRefGoogle Scholar
  168. Vacchi, M., P. Koubbi, L. Ghigliotti & E. Pisano, 2012. Sea–ice interactions with polar fish—Focus on the Antarctic silverfish life history. In di Prisco, G. & C. Verde (eds), Adaptation and Evolution in Marine Environments—The Impacts of Global Change on Biodiversity, Vol. 1., Series “From Pole to Pole” Springer, Berlin: 51–73.CrossRefGoogle Scholar
  169. Verde, C. & G. di Prisco (eds), 2012. Adaptation and Evolution in Marine Environments—The Impacts of Global Change on Biodiversity, vol 2, Series “From Pole to Pole”. Springer, Berlin: i-239.Google Scholar
  170. Verde, C., E. Parisi & G. di Prisco, 2000. The evolution of thermal adaptation in polar fish. Gene 385: 137–145.CrossRefGoogle Scholar
  171. Verde, C., V. Carratore, A. Riccio, M. Tamburrini, E. Parisi & G. di Prisco, 2002. The functionally distinct hemoglobins of the Arctic spotted wolffish Anarhichas minor. Journal of Biological Chemistry 277: 36312–36320.PubMedCrossRefGoogle Scholar
  172. Verde, C., E. Parisi, D. de Pascale, A. Riccio, G. di Prisco, 2003a. The hemoglobin system of the Arctic Spotted Wolffish Anarhichas minor: comparison of northern and southern polar marine environments. In Huiskes, A. H. L., W. W. C. Gieskes, J. Rozema, R. M. L. Schorno, S. M. van der Vies & W. J. Wolff (eds), Proceedings of the SCAR 8th International Biology Symposium “Antarctic Biology in A Global Context”. Backhuys Publishers: 187–192.Google Scholar
  173. Verde, C., E. Parisi & G. di Prisco, 2003b. The evolution of polar fish hemoglobin: a phylogenetic analysis of the ancestral amino acid residues linked to the Root effect. Journal of Molecular Evolution 57: S258–S267.PubMedCrossRefGoogle Scholar
  174. Verde, C., B. D. Howes, M. C. De Rosa, L. Raiola, G. Smulevich, R. Williams, B. Giardina, E. Parisi & G. di Prisco, 2004a. Structure and function of the Gondwanian hemoglobin of Pseudaphritis urvillii, a primitive notothenioid fish of temperate latitudes. Protein Science 13: 2766–2781.PubMedCentralPubMedCrossRefGoogle Scholar
  175. Verde, C., E. Parisi & G. di Prisco, 2004b. The evolution of polar fish hemoglobin: Structure, function and phylogeny. Antarctic Science 16: 59–69.CrossRefGoogle Scholar
  176. Verde, C., M. C. De Rosa, D. Giordano, D. Mosca, D. de Pascale, L. Raiola, E. Cocca, V. Carratore, B. Giardina & G. di Prisco, 2005. Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea. Biochemical Journal 389: 297–306.PubMedCentralPubMedCrossRefGoogle Scholar
  177. Verde, C., M. Balestrieri, D. de Pascale, D. Pagnozzi, G. Lecointre & G. di Prisco, 2006a. The oxygen-transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of hemoglobin. Journal of Biological Chemistry 281: 22073–22084.PubMedCrossRefGoogle Scholar
  178. Verde, C., D. Giordano & G. di Prisco, 2006b. Molecular evolution of haemoglobins of polar fishes. Reviews in Environmental Science and Biotechnology 5: 297–308.CrossRefGoogle Scholar
  179. Verde, C., E. Parisi & G. di Prisco, 2006c. Non-Antarctic primitive and modern notothenioid fish species: tracking the adaptive evolution in the structure, function and molecular phylogeny of haemoglobin. Deep Sea Research 53: 1105–1114.CrossRefGoogle Scholar
  180. Verde, C., G. Lecointre & G. di Prisco, 2007a. The phylogeny of polar fishes and the structure, function and molecular evolution of hemoglobin. Polar Biology 30: 523–539.CrossRefGoogle Scholar
  181. Verde, C., A. Vergara, D. Giordano, L. Mazzarella & G. di Prisco, 2007b. The Root effect. A structural and evolutionary perspective. Antarctic Science 19: 271–278.CrossRefGoogle Scholar
  182. Verde, C., D. Giordano & G. di Prisco, 2008. The adaptation of polar fishes to climatic changes: structure, function and phylogeny of haemoglobin. IUBMB Life 60: 9–40.Google Scholar
  183. Verde, C., D. Giordano & G. di Prisco, 2011a. Hemoglobin differentiation in fishes. In Farrell, T. (ed.), On-Line Encyclopaedia of Fish Physiology, from Genome to Environment, Vol. 2. Academic Press, San Diego: 944–950.CrossRefGoogle Scholar
  184. Verde, C., D. Giordano & G. di Prisco, 2011b. Erythropoiesis in fishes. In Farrell, T. (ed.), On-Line Encyclopaedia of Fish Physiology, from Genome to Environment, Vol. 2. Academic Press, San Diego: 992–997.CrossRefGoogle Scholar
  185. Verde, C., P. Convey & G. di Prisco, 2012a. Molecular and genetic advances to understanding evolution and biodiversity in the polar regions. Marine Genomics 8: 1–65.PubMedCrossRefGoogle Scholar
  186. Verde, C., G. di Prisco, D. Giordano, R. Russo, D. Anderson & D. Cowan, 2012b. Antarctic psychrophiles: models for understanding the molecular basis of survival at low temperature and responses to climate change. In Lewis, G., S. Aitken, P. Dang, D. Hik, T. Kulkarni, S. Coulson, I. Jónsdóttir, T. Barry, M. Gill, P. Convey & G. di Prisco (eds), The Impacts of Climate Change on Circumpolar Biodiversity. Biodiversity 13: 249–256.Google Scholar
  187. Verde, C., D. Giordano, R. Russo & G. di Prisco, 2012c. The adaptive evolution of polar fishes: lessons from the function of hemoproteins. In di Prisco, G. & C. Verde (eds), Adaptation and Evolution in Marine Environments—The Impacts of Global Change on Biodiversity, Vol. 1., Series “From Pole to Pole” Springer, Berlin: 197–213.CrossRefGoogle Scholar
  188. Verde, C., D. Giordano, G. di Prisco & Ø. Andersen, 2012d. The hemoglobins of polar fish: evolutionary and physiological significance of multiplicity in Arctic fish. In Lewis, G., S. Aitken, P. Dang, D. Hik, T. Kulkarni, S. Coulson, I. Jónsdóttir, T. Barry, M. Gill, P. Convey & G. di Prisco (eds), The Impacts of Climate Change on Circumpolar Biodiversity. Biodiversity 13: 228–233.Google Scholar
  189. Vergara, A., M. Franzese, A. Merlino, L. Vitagliano, C. Verde, G. di Prisco, C.-H. Lee, J. Peisach & L. Mazzarella, 2007. Structural characterization of ferric hemoglobins from three Antarctic fish species of the suborder Notothenioidei. Biophysical Journal 98: 2822–2829.CrossRefGoogle Scholar
  190. Vergara, A., M. Franzese, A. Merlino, G. Bonomi, C. Verde, D. Giordano, G. di Prisco, H. C. Lee, J. Peisach & L. Mazzarella, 2009. Correlation between hemichrome stability and Root effect in tetrameric hemoglobins. Biophysical Journal 97: 866–874.PubMedCentralPubMedCrossRefGoogle Scholar
  191. Vergara, A., L. Vitagliano, A. Merlino, F. Sica, K. Marino, C. Verde, G. di Prisco & L. Mazzarella, 2010. An order-disorder transition plays a role in switching off the Root effect in fish hemoglobins. Journal of Biological Chemistry 285: 32568–32575.PubMedCentralPubMedCrossRefGoogle Scholar
  192. Vitagliano, L., A. Vergara, G. Bonomi, A. Merlino, C. Verde, G. di Prisco, B. D. Howes, G. Smulevich & L. Mazzarella, 2008. Spectroscopic and crystallographic characterization of a tetrameric haemoglobin oxidation reveals structural features of the functional intermediate R/T state. Journal of the American Chemical Society 130: 10527–10535.PubMedCrossRefGoogle Scholar
  193. Wells, R. M. G., M. D. Ashby, S. J. Duncan & J. A. MacDonald, 1980. Comparative studies of the erythrocytes and hemoglobins in nototheniid fishes from Antarctica. Journal of Fish Biology 17: 517–527.CrossRefGoogle Scholar
  194. Wells, R. M. G., J. A. MacDonald & G. di Prisco, 1990. Thin-blooded antarctic fishes: a rheological comparison of the hemoglobin-free icefishes, Chionodraco kathleenae and Cryodraco antarcticus, with a red-blooded nototheniid, Pagothenia bernacchii. Journal of Fish Biology 36: 595–609.CrossRefGoogle Scholar
  195. Wittenberg, J. B. & B. A. Wittenberg, 1974. The choroid rete mirabile. I. Oxygen secretion and structure: comparison with the swimbladder rete mirabile. Biological Bulletin 146: 116–136.PubMedCrossRefGoogle Scholar
  196. Zangger, K., G. Shen, G. Oz, J. D. Otvos & I. M. Armitage, 2001. Oxidative dimerization in metallothionein is a result of intermolecular disulphide bonds between cysteines in the alpha-domain. Biochemical Journal 359: 353–360.PubMedCentralPubMedCrossRefGoogle Scholar
  197. Zhao, Y., M. Ratnayake-Lecamwasam, S. K. Parker, E. Cocca, L. Camardella, G. di Prisco & H. W. Detrich III, 1998. The major adult α-globin gene of Antarctic teleosts and its remnants in the hemoglobinless icefishes. Calibration of the mutational clock for nuclear genes. Journal of Biological Chemistry 273: 14745–14752.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Biosciences and BioResourcesNational Research CouncilNaplesItaly

Personalised recommendations