, Volume 765, Issue 1, pp 149–158 | Cite as

Inter- and intraspecific variation of carbon and nitrogen stable isotope ratios in freshwater bivalves

  • Adriana Novais
  • Ester Dias
  • Ronaldo Sousa
Primary Research Paper


Freshwater bivalves provide important ecosystem functions and services, yet many of their ecological traits such as feeding mechanisms and resource use are largely ignored. In this study, we aimed to evaluate the potential overlap in resource use by bivalve species living in sympatry in European freshwater ecosystems. This was accomplished by analyzing the stable isotope ratios of carbon (C) and nitrogen (N) values of six bivalve species (five native species plus the invasive species Corbicula fluminea) in six distinct aquatic ecosystems. Results showed significant inter- and intraspecific differences in both stable isotope ratios. The interspecific variability suggests differences in the food sources consumed, which can be related to differences in feeding behavior. At the intraspecific level, there was a gradient in the stable isotope ratios from the oligotrophic River Paiva (15N-depleted and 13C-enriched) to the eutrophic Mira Lagoon (15N-enriched and 13C-depleted), suggesting a change in the resources used from benthic to pelagic food sources, respectively, and/or differences in the stable isotopic baseline in each ecosystem. Thus, flexible feeding strategies combined with size selectivity may decrease the possible competition for food sources by native and invasive species living in sympatry.


Bivalves Corbicula fluminea Freshwater ecosystems Invasive and native species Stable isotopes 



A. Novais was supported by a Ph.D. Grant (SFRH/BD/86463/2012) from the Portuguese Foundation for Science and Technology—FCT through POPH/FSE funds. This study was conducted in the scope of the project ECO-IAS: ecosystem-level impacts of an invasive alien species, funded by FCT and COMPETE funds (contract: PTDC/AAC-AMB/116685/2010). This study was also partially supported by the European Regional Development Fund (ERDF) through the COMPETE, under the project “PEst-C/MAR/LA0015/2011.” Special thanks are addressed to Francisco Carvalho and Ângela Amorim for help in collecting the organisms in the field, to Sofia Gonçalves for assistance in the stable isotope analyses, to Joel C. Hoffman, Beat Oertli, and two anonymous referees for valuable suggestions on an earlier version of the manuscript.


  1. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.Google Scholar
  2. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth.Google Scholar
  3. Angradi, T. R., 1994. Trophic linkages in the lower Colorado River: multiple stable isotope evidence. Journal of the North American Benthological Society 13: 479–495.CrossRefGoogle Scholar
  4. Atkinson, C. L., S. W. Golladay, S. P. Opsahl & A. P. Covich, 2009. Stream discharge and floodplain connections affect seston quality and stable isotopic signatures in a coastal plain stream. Journal of the North American Benthological Society 28: 360–370.CrossRefGoogle Scholar
  5. Atkinson, C. L., S. P. Opsahl, A. P. Covich, S. W. Golladay & L. M. Conner, 2010. Stable isotopic signatures, tissue stoichiometry, and nutrient cycling (C and N) of native and invasive freshwater bivalves. Journal of the North American Benthological Society 29: 496–505.CrossRefGoogle Scholar
  6. Atkinson, C. L., M. R. First, A. P. Covich, S. P. Opsahl & S. W. Golladay, 2011. Suspended material availability and filtration-biodeposition processes performed by a native and invasive bivalve species in streams. Hydrobiologia 667: 191–204.CrossRefGoogle Scholar
  7. Atkinson, C. L., A. D. Christian, D. E. Spooner & C. C. Vaughn, 2014. Long-lived organisms provide an integrative footprint of agricultural land use. Ecological Applications 24: 375–384.CrossRefPubMedGoogle Scholar
  8. Boltovskoy, D., I. Izaguirre & N. Correa, 1995. Feeding selectivity of Corbicula fluminea (Bivalvia) on natural phytoplankton. Hydrobiologia 312: 171–182.CrossRefGoogle Scholar
  9. Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences 93: 10844–10847.CrossRefGoogle Scholar
  10. Clarke, K. R. & R. M. Warwick, 2001. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth.Google Scholar
  11. Cloern, J. E., E. A. Canuel & D. Harris, 2002. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnology and Oceanography 47: 713–729.CrossRefGoogle Scholar
  12. Dame, R. F., 1996. Ecology of marine bivalves: an ecosystem approach. CRC, New York.CrossRefGoogle Scholar
  13. DeNiro, M. J. & S. Epstein, 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197: 261–263.CrossRefPubMedGoogle Scholar
  14. DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica Cosmochimica Acta 42: 495–506.CrossRefGoogle Scholar
  15. Dias, E., P. Morais, C. Antunes & J. C. Hoffman, 2014. Linking terrestrial and benthic estuarine ecosystems: organic matter sources supporting the high secondary production of a non-indigenous bivalve. Biological Invasions 16: 2163–2179.CrossRefGoogle Scholar
  16. Dillon Jr, R. T., 2000. The ecology of freshwater mollusks. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  17. Ferreira, J. G., T. Simas, A. Nobre, M. C. Silva, K. Schifferegger & J. Lencart-Silva, 2003. Identification of sensitive areas and vulnerable zones in transitional and coastal Portuguese systems. Application of the United States National Estuarine Eutrophication Assessment to the Minho, Lima, Douro, Ria de Aveiro, Mondego, Tagus, Sado, Mira, Ria Formosa and Guadiana systems, INAG/IMAR Technical Report.Google Scholar
  18. Ferreiro, N., 2007. Caracterização da qualidade ecológica do rio Tua. Master thesis, University of Porto, Portugal.Google Scholar
  19. Finlay, J. C., M. E. Power & G. Cabana, 1999. Effects of water velocity on algal carbon isotope ratios: implications for river food web studies. American Society of Limnology and Oceanography 44: 1198–1203.CrossRefGoogle Scholar
  20. France, R. L., 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series 124: 307–312.CrossRefGoogle Scholar
  21. Fry, B., 1991. Stable isotope diagrams of freshwater food webs. Ecology 72: 2293–2297.CrossRefGoogle Scholar
  22. Galbraith, H. S., S. E. Frazier, B. Allison & C. C. Vaughn, 2009. Comparison of gill surface morphology across a guild of suspension-feeding unionid bivalves. Journal of Molluscan Studies 75: 103–107.CrossRefGoogle Scholar
  23. Garcia, C. M. T., 2001. Isolamento, cultura e avaliação de toxicidade de estirpes de cianobactérias da Lagoa de Mira. Master thesis, University of Porto, Portugal.Google Scholar
  24. Goedkoop, W., N. Akerblom & M. H. Demandt, 2006. Trophic fractionation of carbon and nitrogen stable isotopes in Chironomus riparius reared on food of aquatic and terrestrial origin. Freshwater Biology 51: 878–886.CrossRefGoogle Scholar
  25. Hakenkamp, C. C. & M. A. Palmer, 1999. Introduced bivalves in freshwater ecosystems: the impact of Corbicula on organic matter dynamics in a sandy stream. Oecologia 119: 445–451.CrossRefGoogle Scholar
  26. Hoffman, J. C. & D. A. Bronk, 2006. Interannual variation in stable carbon and nitrogen isotope biogeochemistry of the Mattaponi River, Virginia. Limnology & Oceanography 51: 2319–2332.CrossRefGoogle Scholar
  27. Howard, J. K., K. M. Cuffey & M. Solomon, 2005. Toward using Margaritifera falcata as an indicator of base level nitrogen and carbon isotope ratios: insights from two California Coast Range rivers. Hydrobiologia 541: 229–236.CrossRefGoogle Scholar
  28. Kreitler, C. W. & L. A. Browning, 1983. Nitrogen-isotope analysis of groundwater nitrate and carbonate aquifers: natural sources versus human pollution. Journal of Hydrology 61: 285–301.CrossRefGoogle Scholar
  29. Layman, C. A., M. S. Araujo, R. Boucek, C. M. Hammerschlag-Peyer, E. Harrison, Z. R. Jud, P. Matich, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager, D. M. Post & S. Bearhop, 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews 87: 545–562.CrossRefPubMedGoogle Scholar
  30. Logan, J. M., T. D. Jardine, T. J. Miller, S. E. Bunn, R. A. Cunjak & M. E. Lutcavage, 2008. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. Journal of Animal Ecology 77: 838–846.CrossRefPubMedGoogle Scholar
  31. Lopes-Lima, M., A. Teixeira, E. Froufe, A. Lopes, S. Varandas & R. Sousa, 2014a. Biology and conservation of freshwater bivalves: past, present and future perspectives. Hydrobiologia 735: 1–13.CrossRefGoogle Scholar
  32. Lopes-Lima, M., P. Lima, M. Hinzmann, A. Rocha & J. Machado, 2014b. Selective feeding by Anodonta cygnea (Linnaeus, 1771): the effects of seasonal changes and nutritional demands. Limnologica 44: 18–22.CrossRefGoogle Scholar
  33. Lopez, G. R. & I. J. Holopainen, 1987. Interstitial suspension-feeding by Pisidium spp. (Pisidiidae: Bivalvia): a new guild in the lentic benthos? American Malacological Bulletin 5: 21–30.Google Scholar
  34. McCutchan Jr, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.CrossRefGoogle Scholar
  35. McKinney, R. A., J. L. Lake, R. A. Charpentier & S. Ryba, 2002. Using mussel isotope ratios to assess anthropogenic inputs to freshwater ecosystems. Environmental Monitoring and Assessment 74: 167–192.CrossRefPubMedGoogle Scholar
  36. McNeely, C., S. M. Clinton & J. M. Erbe, 2006. Landscape variation in C sources of scraping primary consumers in streams. Journal of the North American Benthological Society 25: 787–799.CrossRefGoogle Scholar
  37. Minagawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica Cosmochimica Acta 48: 1135–1140.CrossRefGoogle Scholar
  38. Oliveira, J. M., P. Segurado, J. M. Santos, A. Teixeira, M. T. Ferreira & R. V. Cortes, 2012. Modelling stream-fish functional traits in reference conditions: regional and local environmental correlates. PLoS ONE 9: e45787.CrossRefGoogle Scholar
  39. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.CrossRefGoogle Scholar
  40. Raikow, D. F. & S. K. Hamilton, 2001. Bivalves diets in a midwestern U.S. stream: a stable isotope enrichment study. American Society of Limnology and Oceanography 46: 514–522.CrossRefGoogle Scholar
  41. Régnier, C., B. Fontaine & P. Bouchet, 2009. Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conservation Biology 23: 1214–1221.CrossRefPubMedGoogle Scholar
  42. Reid, R. G. B., R. F. McMahon, D. O. Foighil & R. Finnigan, 1992. Anterior inhalant currents and pedal-feeding in bivalves. Veliger 35: 93–104.Google Scholar
  43. Rolston, D. E., G. E. Fogg, D. L. Decker, D. J. Louie & M. E. Grimser, 1996. Nitrogen isotope ratios identify nitrate contamination sources. California Agriculture 50: 32–36.CrossRefGoogle Scholar
  44. Silverman, H., E. E. Archberger, J. W. Lynn & T. H. Dietz, 1995. Filtration and utilization of laboratory-cultured bacteria by Dreissena polymorpha, Corbicula fluminea and Carunculina texasensis. Biological Bulletin 189: 308–319.CrossRefGoogle Scholar
  45. Silverman, H., S. J. Nichols, J. S. Cherry, E. Achberger, J. W. Lynn & T. H. Dietz, 1997. Clearance of laboratory-cultured bacteria by freshwater bivalves: differences between lentic and lotic unionids. Canadian Journal of Zoology 75: 1857–1866.CrossRefGoogle Scholar
  46. Sousa, R., L. Guilhermino & C. Antunes, 2005. Molluscan fauna in the freshwater tidal area of the River Minho estuary, NW of Iberian Peninsula. Annales de Limnologie—International Journal of Limnology 41: 141–147.CrossRefGoogle Scholar
  47. Sousa, R., C. Antunes & L. Guilhermino, 2008a. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Annales de Limnologie—International Journal of Limnology 44: 85–94.CrossRefGoogle Scholar
  48. Sousa, R., M. Rufino, M. Gaspar, C. Antunes & L. Guilhermino, 2008b. Abiotic impacts on spatial and temporal distribution of Corbicula fluminea (Müller, 1774) in the River Minho estuary, Portugal. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 98–110.CrossRefGoogle Scholar
  49. Sousa, R., P. Morais, C. Antunes & L. Guilhermino, 2008c. Factors affecting Pisidium amnicum (Müller, 1774; Bivalvia: Sphaeriidae) distribution in the River Minho estuary: consequences for its conservation. Estuaries and Coasts 31: 1198–1207.CrossRefGoogle Scholar
  50. Sousa, R., A. J. A. Nogueira, C. Antunes & L. Guilhermino, 2008d. Growth and production of Pisidium amnicum (Müller, 1774) in the freshwater tidal area of the River Minho estuary. Estuarine, Coastal and Shelf Science 79: 467–474.CrossRefGoogle Scholar
  51. Sousa, R., M. Ilarri, A. T. Souza, C. Antunes & L. Guilhermino, 2011. Rapid decline of the greater European peaclam at the periphery of its distribution. Annales de Limnologie—International Journal of Limnology 47: 211–219.CrossRefGoogle Scholar
  52. Sousa, R., S. Varandas, R. Cortes, A. Teixeira, M. Lopes-Lima, J. Machado & L. Guilhermino, 2012. Massive die-offs of freshwater bivalves as resource pulses. Annales de Limnologie—International Journal of Limnology 48: 105–112.CrossRefGoogle Scholar
  53. Sousa, R., A. Amorim, C. Sobral, E. Froufe, S. Varandas, A. Teixeira & M. Lopes-Lima, 2013. Ecological status of a Margaritifera margaritifera (Linnaeus, 1758) population at the southern edge of its distribution (River Paiva, Portugal). Environmental Management 52: 1230–1238.CrossRefPubMedGoogle Scholar
  54. Sousa, R., A. Novais, R. Costa & D. L. Strayer, 2014. Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735: 233–251.CrossRefGoogle Scholar
  55. Strayer, D. L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55: 152–174.CrossRefGoogle Scholar
  56. Strayer, D., J. A. Downing, W. R. Haag, T. L. King, J. B. Layer, T. J. Newton & S. J. Nichols, 2004. Changing perspectives on pearly mussels, North America’s most imperiled animals. BioScience 54: 429–439.CrossRefGoogle Scholar
  57. Thorp, J. H., M. D. Delong, K. S. Greenwood & A. F. Casper, 1998. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river. Oecologia 117: 551–563.CrossRefGoogle Scholar
  58. Vaughn, C. C., 2010. Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions. BioScience 60: 25–35.CrossRefGoogle Scholar
  59. Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.CrossRefGoogle Scholar
  60. Vaughn, C. C. & C. M. Taylor, 1999. Impoundments and the decline of freshwater mussels: a case study of an extinction gradient. Conservation Biology 13: 912–920.CrossRefGoogle Scholar
  61. Vaughn, C. C., S. J. Nichols & D. E. Spooner, 2008. Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society 27: 409–423.CrossRefGoogle Scholar
  62. Way, C. M., D. J. Hornbach, T. Deneka & R. A. Whitehead, 1989. A description of the ultrastructure of the gills of freshwater bivalves, including a new structure, the frontal cirrus. Canadian Journal of Zoology 67: 357–362.CrossRefGoogle Scholar
  63. Way, C. M., D. J. Hornbach, C. A. Miller-Way, B. S. Payne & A. C. Miller, 1990. Dynamics of filter feeding in Corbicula fluminea (Bivalvia: Corbiculidae). Canadian Journal of Zoology 68: 115–120.CrossRefGoogle Scholar
  64. West, J. B., G. J. Bowen, T. E. Cerling & J. R. Ehleringer, 2006. Stable isotopes as one of nature’s ecological recorders. Trends in Ecology and Evolution 21: 408–414.CrossRefPubMedGoogle Scholar
  65. Zanden, M. J. V. & J. B. Rasmussen, 1999. Primary consumer 13C and 15N and the trophic position of aquatic consumers. Ecology 80: 1395–1404.CrossRefGoogle Scholar
  66. Zanden, M. J. V. & J. B. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CBMA – Centre of Molecular and Environmental Biology, Department of BiologyUniversity of MinhoBragaPortugal
  2. 2.CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoPortoPortugal

Personalised recommendations