, Volume 763, Issue 1, pp 329–344 | Cite as

Coincidence of sedimentation peaks with diatom blooms, wind, and calcite precipitation measured in high resolution by a multi-trap

  • Andrea Fuchs
  • Géza B. Selmeczy
  • Peter Kasprzak
  • Judit Padisák
  • Peter CasperEmail author
Primary Research Paper


Organisms and processes in the epilimnion of lakes determine the rate of sedimentation. To investigate the impact of phyto- and zooplankton on the sedimentation rate, we sampled the sedimenting material in Lake Stechlin. Sedimenting matter was collected using a high-resolution multi-trap in three-day intervals during the thermally stratified seasons in 2011 (at 65 m depth) and 2012 (at 20 m depth). Dry weight of the sedimented material was related to chemical, physical, and biological data collected from the water column, as well as to meteorological data. The high-resolution trap showed two mass sedimentation peaks in 2011 and one in 2012. We found that diatom blooms in spring were followed by the highest sedimentation rate in 2011, but not in 2012. The sedimentation rates significantly correlated to low wind speed, followed by a rapid formation of the thermocline, as well as to high calcite concentrations in 2011. Our results suggest that the presence of some aggregation factors like calcite crystal exopolymers or fecal pellets support the sinking process. Furthermore, the high resolution of the trap used here allowed for obtaining precise correlations between sedimentation and the measured parameters indicating relevance of temporal coincidence of multiple environmental variables.


Sedimentation trap Wind speed Calcite precipitation Plankton 



U. Beyer, E. Huth, M. Lentz, U. Mallok, and M. Papke are acknowledged for excellent laboratory help, M. Sachtleben, R. Degebrodt, and H. Volkmann for technical support in the field, R. Rossberg for scanning electron microscopy, and F. Keck (INRA) for help and advice with R programming. We are grateful to the Federal Environmental Agency (UBA), K. Uhse (Langen) and O. Bath (Neuglobsow), for meteorological data. T. Mehner and the participants of a workshop “Scientific Writing” at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries helped to improve the manuscript. This work was funded by Leibniz Association (Berlin) within the project “Climate driven changes in biodiversity of microbiota –TemBi” (SAW-2011-IGB-2).

Supplementary material

10750_2015_2388_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)
10750_2015_2388_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 kb)


  1. Blais, J. M. & J. Kalff, 1995. The influence of lake morphometry on sediment focussing. Limnology and Oceanography 40: 582–588.CrossRefGoogle Scholar
  2. Bloesch, J., 1974. Sedimentation und Phosphorhaushalt im Vierwaldstättersee (Horwer Bucht) und im Rotsee. Schweizerische Zeitschrift für Hydrologie 36: 71–186.Google Scholar
  3. Bloesch, J., 1994. Editorial: sediment resuspension in lakes. Hydrobiologia 284: 1–3.CrossRefGoogle Scholar
  4. Bloesch, J. & N. M. Burns, 1980. A critical review of sedimentation trap technique. Schweizerische Zeitschrift für Hydrologie 42: 15–55.Google Scholar
  5. Bloesch, J. & U. Uehlinger, 1986. Horizontal differences in a eutrophic Swiss lake. Limnology and Oceanography 31: 1094–1109.CrossRefGoogle Scholar
  6. Boström, B., J. M. Andersen, S. Fleischer & M. Jansson, 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229–244.CrossRefGoogle Scholar
  7. Bottrel, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Illkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 21: 477–483.Google Scholar
  8. Capblancq, J., 1990. Nutrient dynamics and pelagic food web interactions in oligotrophic and eutrophic environments: an overview. Hydrobiologia 207: 1–14.CrossRefGoogle Scholar
  9. Casper, J. S. (ed.), 1985. Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publishers, Dordrecht.Google Scholar
  10. Casper, P., 1995. Lake Stechlin – background for limnological and ecotoxicological research. Limnologica 25: 277–379.Google Scholar
  11. Casper, P. & H.-P. Kozerski, 1999. Sedimentation. In von Tümpling, W. & G. Friedrich (eds), Methoden der Biologischen Gewässeruntersuchung, Vol. 2. Gustav Fischer Verlag, Jena: 474–482.Google Scholar
  12. Coale, K. H., 1990. Labyrinth of doom: a device to minimize the “swimmer” component in sediment trap collections. Limnology and Oceanography 35: 1376–1381.CrossRefGoogle Scholar
  13. Darchambeau, F., I. Thys, B. Leporcq, L. Hoffmann & J.-P. Descy, 2005. Influence of zooplankton stoichiometry on nutrient sedimentation in a lake system. Limnology and Oceanography 50: 905–913.CrossRefGoogle Scholar
  14. Dittrich, M., T. Dittrich, I. Sieber & R. Koschel, 1997. A balance analysis of phosphorus elimination by artificial calcite precipitation in a stratified hardwater lake. Water Research 31: 237–248.CrossRefGoogle Scholar
  15. Dittrich, M. & R. Koschel, 2002. Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 469: 49–57.CrossRefGoogle Scholar
  16. Eadie, B. J., R. L. Chambers, W. S. Gardner & G. L. Bell, 1984. Sediment trap studies in Lake Michigan: resuspension and chemical fluxes in the Southern Basin. Journal of Great Lakes Research 10: 307–321.CrossRefGoogle Scholar
  17. Ebina, L., T. Tsutsui & T. Shirai, 1983. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Research 17: 1721–1726.CrossRefGoogle Scholar
  18. Evans, R. D., 1994. Empirical evidence of the importance of sediment resuspension in lakes. Hydrobiologia 284: 5–12.CrossRefGoogle Scholar
  19. Forsberg, C., 1989. Importance of sediments in understanding nutrient cyclings in lakes. Hydrobiologia 176(177): 263–277.CrossRefGoogle Scholar
  20. Gardner, W. D., 1980. Sediment trap dynamics and calibration: a laboratory evaluation. Journal of Marine Research 38: 17–39.Google Scholar
  21. Gardner, W. D., M. J. Richardson, K. R. Hinga & P. E. Biscaye, 1983. Resuspension measured with sediment traps in a high-energy environment. Earth and Planetary Science Letters 66: 262–278.CrossRefGoogle Scholar
  22. Goedkoop, W., K. R. Gullberg, R. K. Johnson & I. Ahlgren, 1997. Microbial response of a freshwater benthic community to a simulated diatom sedimentation event: interactive effects of a benthic fauna. Microbial Ecology 34: 131–143.CrossRefPubMedGoogle Scholar
  23. Goedkoop, W. & K. Pettersson, 2000. Seasonal changes in sediment phosphorus forms in relation to sedimentation and benthic bacterial biomass in Lake Erken. Hydrobiologia 431: 41–50.CrossRefGoogle Scholar
  24. Graf, G., W. Bengtsson, U. Diesner, R. Schulz & H. Theede, 1982. Benthic response to sedimentation of a spring phytoplankton bloom: process and budget. Marine Biology 67: 201–208.CrossRefGoogle Scholar
  25. Grossart, H.-P. & M. Simon, 1998. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquatic Microbial Ecology 15: 127–140.CrossRefGoogle Scholar
  26. Grossart, H.-P., M. Simon & B. Logan, 1997. Formation of macroscopic organic aggregates (lake snow) in a large lake: the significance of transparent exopolymer particles, phytoplankton, and zooplankton. Limnology and Oceanography 42: 1651–1659.CrossRefGoogle Scholar
  27. Gunnison, D. & M. Alexander, 1975. Resistance and susceptibility of algae to decomposition by natural microbial communities. Limnology and Geography 20: 64–70.Google Scholar
  28. Hirst, A. G. & T. Kiørboe, 2002. Mortality of marine planktonic copepods: global rates and patterns. Marine Ecology Progress Series 230: 195–209.CrossRefGoogle Scholar
  29. Holdren, G. C. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intact sediment cores. Environmental Science & Technology 14: 79–87.CrossRefGoogle Scholar
  30. Hondzo, M. & H. G. Stefan, 1993. Regional water temperature characteristics of lakes subjected to climate change. Climate Change 24: 187–211.CrossRefGoogle Scholar
  31. IPCC, 2007. Summary for policymakers. In Pachauri, R. K. & A. Reisinger (eds), Climate Change 2007: Synthesis Report. Switzerland, Geneva.Google Scholar
  32. Kasprzak, P., 1983. Bestimmung des Körperkohlenstoffs von Planktoncrustaceen. Limnologica 15: 191–194.Google Scholar
  33. Kasprzak, P. & D. Ronneberger, 1985. The secondary production. In Casper, J. S. (ed.), Lake Stechlin. A Temperate Oligotrophic Lake, Vol. 58., Monographiae biologicae Dr. W. Junk Publishers, Dordrecht: 323–345.CrossRefGoogle Scholar
  34. Kelts, K. & K. J. Hsü, 1978. Freshwater carbonate sedimentation. In Lerman, A. (ed.), Lakes. Chemistry, Geology, Physics. Springer, New York: 295–323.Google Scholar
  35. Kirillin, G., H.-P. Grossart & K. W. Tang, 2012. Modeling sinking rate of zooplankton carcasses: effects of stratification and mixing. Limnology and Oceanography 57: 881–894.CrossRefGoogle Scholar
  36. Koschel, R., 1990. Pelagic calcite precipitation and trophic state of hardwater lakes. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 33: 713–722.Google Scholar
  37. Koschel, R. & D. D. Adams, 2003. Preface: an approach to understanding a temperate oligotrophic lowland lake (Lake Stechlin, Germany). Archiv für Hydrobiologie Special Issues Advances in Limnology 58: 1–9.Google Scholar
  38. Koschel, R., G. Mothes & J. S. Casper, 1985. The nuclear power plant and its role in the life of Lake Stechlin. In Casper, J. S. (ed.), Lake Stechlin. A Temperate Oligotrophic Lake, Vol. 58., Monographiae biologicae Dr. W. Junk Publishers, Dordrecht: 419–431.Google Scholar
  39. Koschel, R., J. Benndorf, G. Proft & F. Recknagel, 1987. Model-assisted evaluation of alternative hypotheses to explain the self-protection mechanism of lakes due to calcite precipitation. Ecological Modelling 39: 59–65.CrossRefGoogle Scholar
  40. Lane, P. V. Z., S. L. Smith, J. L. Urban & P. E. Biscaye, 1994. Carbon flux and recycling associated with zooplanktonic fecal pellets on the shelf of the Middle Atlantic Bight. Deep-Sea Research II 41: 437–457.CrossRefGoogle Scholar
  41. Lastein, E., 1976. Recent sedimentation and resuspension of organic matter in eutrophic Lake Esrom, Denmark. Oikos 27: 44–49.CrossRefGoogle Scholar
  42. Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climate Change 57: 205–225.CrossRefGoogle Scholar
  43. Logan, B. E., U. Passow, A. Alldredge, H.-P. Grossart & M. Simon, 1995. Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep-Sea Research II 42: 203–214.CrossRefGoogle Scholar
  44. McCormic, M. J., 1990. Potential changes in thermal structure and cycle of Lake Michigan due to global warming. Transactions of the American Fisheries Society 119: 183–194.CrossRefGoogle Scholar
  45. Meyers, P. A. & B. J. Eadie, 1993. Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Organic Geochemistry 20: 47–56.CrossRefGoogle Scholar
  46. Molongoski, J. J. & M. J. Klug, 1980. Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake. Freshwater Biology 10: 507–518.CrossRefGoogle Scholar
  47. Moschen, R., A. Lücke, J. Parplies, U. Radtke & G. H. Schleser, 2006. Transfer and early diagenesis of biogenic silica oxygen isotope signals during settling and sedimentation of diatoms in a temperate freshwater lake (Lake Holzmaar, Germany). Geochimica et Cosmochimica Acta 70: 4367–4379.CrossRefGoogle Scholar
  48. Mothes, G., 1985. Sedimentation. In Casper, J. S. (ed.), Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publishers, Dordrecht: 386–399.Google Scholar
  49. Padisák, J., W. Scheffler, C. Sípos, P. Kasprzak, R. Koschel & L. Krienitz, 2003. Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Archiv für Hydrobiologie Special Issues Advances in Limnology 58: 135–155.Google Scholar
  50. Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Üveges, 2010. Rarity, ecological memory, rate of floral change in phytoplankton – and the mystery of the Red Cock. Hydrobiologia 653: 45–64.CrossRefGoogle Scholar
  51. Peeters, F., D. M. Livingstone, G.-H. Goudsmit, R. Kipfer & R. Forster, 2002. Modeling 50 years of historical temperature profiles in a large central European lake. Limnology and Oceanography 47: 186–197.CrossRefGoogle Scholar
  52. Ploug, H., M. H. Iversen, M. Koski & E. T. Buitenhuis, 2008. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: direct measurements of ballasting by opal and calcite. Limnology and Oceanography 53: 469–476.CrossRefGoogle Scholar
  53. Raidt, H. & R. Koschel, 1988. Morphology of calcite crystals in hardwater lakes. Limnologica 19: 3–12.Google Scholar
  54. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  55. Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine and Freshwater Research 21: 379–390.CrossRefGoogle Scholar
  56. Robertson, D. M. & R. A. Ragotzkie, 1990. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquatic Sciences 52: 360–380.CrossRefGoogle Scholar
  57. Rosa, F., 1985. Sedimentation and sediment resuspension in Lake Ontario. Journal of Great Lakes Research 11: 13–25.CrossRefGoogle Scholar
  58. Rossknecht, H., 1980. Phosphatelimination durch autochthone Calcitfällung im Bodensee-Obersee. Archiv für Hydrobiologie 81: 35–64.Google Scholar
  59. Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.CrossRefGoogle Scholar
  60. Smayda, T. J., 1969. Some measurements of the sinking rate of fecal pellets. Limnology and Oceanography 14: 621–625.CrossRefGoogle Scholar
  61. Smetacek, V., K. von Bröckel, B. Zeitschel & W. Zenk, 1978. Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrographical regime. Marine Biology 47: 211–226.CrossRefGoogle Scholar
  62. Smetacek, V. S., 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology 84: 239–251.CrossRefGoogle Scholar
  63. Sommer, U., 1984. Sedimentation of principal phytoplankton species in Lake Constance. Journal of Plankton Research 6: 1–14.CrossRefGoogle Scholar
  64. Stabel, H.-H., 1986. Calcite precipitation in Lake Constance: chemical equilibrium, sedimentation, and nucleation by algae. Limnology and Oceanography 31: 1081–1093.CrossRefGoogle Scholar
  65. Sturm, M., 1985. Schwebstoffe in Seen. Mitteilungen der EAWAG 19: 9–15.Google Scholar
  66. Tang, K. W., M. I. Gladyshev, O. P. Dubovskaya, G. Kirillin & H.-P. Grossart, 2014. Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments. Journal of Plankton Research 36: 597–612.CrossRefGoogle Scholar
  67. Törnblom, E. & E. Rydin, 1998. Bacterial and phosphorus dynamics in profundal Lake Erken sediments following the deposition of diatoms: a laboratory study. Hydrobiologia 364: 55–63.CrossRefGoogle Scholar
  68. Winberg, G. G. (ed.), 1971. Symbols, Units and Conversion Factors in Studies of Fresh Water Productivity, Vol. 23. International biological programme, London.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andrea Fuchs
    • 1
    • 2
  • Géza B. Selmeczy
    • 1
    • 3
  • Peter Kasprzak
    • 1
  • Judit Padisák
    • 3
    • 4
  • Peter Casper
    • 1
    Email author
  1. 1.Department of Experimental LimnologyLeibniz-Institute of Freshwater Ecology and Inland FisheriesStechlinGermany
  2. 2.Carl-von-Ossietzky Universität OldenburgOldenburgGermany
  3. 3.Department of LimnologyUniversity of PannoniaVeszprémHungary
  4. 4.MTA-PE Limnoecology Research GroupVeszprémHungary

Personalised recommendations