Hydrobiologia

, Volume 762, Issue 1, pp 169–181 | Cite as

Species-specific gradients of juvenile fish density and size in pelagic areas of temperate reservoirs

  • Tomáš Jůza
  • Daniel Ricard
  • Petr Blabolil
  • Martin Čech
  • Vladislav Draštík
  • Jaroslava Frouzová
  • Milan Muška
  • Jiří Peterka
  • Marie Prchalová
  • Milan Říha
  • Zuzana Sajdlová
  • Marek Šmejkal
  • Michal Tušer
  • Mojmír Vašek
  • Lukáš Vejřík
  • Jan Kubečka
Primary Research Paper

Abstract

Data from nine reservoirs in the Czech Republic were used to investigate density and size distribution patterns for dominant fish species of the juvenile pelagic community at night. Clear trends of increasing density along the longitudinal gradient for bream, roach, bleak, and pikeperch were observed in long (>5 km) reservoirs but were absent in short reservoirs. Increasing body size towards the tributary was observed for bream, perch, pikeperch, and ruffe. Cyprinids showed a clear affinity to the surface layer (0–3 m) of long reservoirs, while pikeperch and ruffe juveniles occurred homogeneously at depths down to six meters. Perch juveniles had the highest densities especially in 3–6 m water layer. Size did not change with sampling depth for any species in the reservoirs studied. Our data showed gentle spatial segregation of different juvenile fish species. Although the tributary area is usually the most productive, it is not able to support all juveniles leading to inter- and intra-specific competition and the relegation of juveniles of some species to less productive habitat. This trend was more apparent in long reservoirs with strong trophic gradients. The gradient of nutrients seems to be an important factor driving fish distribution along longitudinal profile of reservoirs.

Keywords

Trawling Horizontal distribution Vertical distribution Tributary area Juvenile density Perca Rutilus Abramis Alburnus Stizostedion Gymnocephalus 

Notes

Acknowledgments

We would like to thank Zdeněk Prachař and Luboš Kočvara for instrumental in conducting field work and processing the collected data, Leslie Tse for careful reading and editing the English, and two anonymous referees for valuable comments on an earlier version of the manuscript. This study was supported by the projects CZ.1.07/2.3.00/20.0204 (CEKOPOT) co-financed by the European Social Fund and the state budget of the Czech Republic. The research leading to these results has received funding also from the Norwegian Financial Mechanism 2009-2014 under project contract number 7F4316. Daniel Ricard was supported by project CZ.1.07/2.3.00/30.0032 (Promotion of post-doctoral positions in the Biology Centre of the Czech Academy of Sciences aimed to build the global competitiveness of the research teams in the Czech Republic) co-financed by the European Social Fund and the state budget of the Czech Republic.

References

  1. Bohl, E., 1980. Diel pattern of pelagic distribution and feeding in planktivorous fish. Oecologia 44: 368–375.CrossRefGoogle Scholar
  2. Bremigan, M. T. & R. A. Stein, 1997. Experimental assessment of the influence of zooplankton size and density on Gizzard shad recruitment. Transactions of the American Fisheries Society 126: 622–637.CrossRefGoogle Scholar
  3. Diehl, S., 1988. Foraging efficiency of three freshwater fishes: effect of structural complexity and light. Oikos 53: 207–214.CrossRefGoogle Scholar
  4. Draštík, V., J. Kubečka, M. Tušer, M. Čech, J. Frouzová, O. Jarolím & M. Prchalová, 2008. The effect of hydropower on fish stocks: comparison between cascade and non-cascade reservoirs. Hydrobiologia 609: 25–36.CrossRefGoogle Scholar
  5. Edsall, T. A., J. H. Selgeby, T. J. DeSorcie & J. R. P. French III, 1993. Growth-temperature relation for young-of-the-year ruffe. Journal of Great Lakes Research 19: 630–633.CrossRefGoogle Scholar
  6. Fernandéz-Rosado, M. J., J. Lucerna & F. X. Niell, 1994. Space-time heterogeneity of the chlorophyll-a distribution in La Concepción Reservoir (Istán, Málaga). Representative models. Archiv fur Hydrobiologie 129: 311–325.Google Scholar
  7. Fernando, C. H. & J. Holčík, 1991. Fish in reservoirs. Internationale Review der Gesamsten Hydrobiologie 76: 149–167.CrossRefGoogle Scholar
  8. Gliwicz, Z. M. & A. Jächner, 1992. Diel migrations of juvenile fish – a ghost of predation past or present? Archiv für Hydrobiologie 124: 385–410.Google Scholar
  9. Hardin, G., 1960. The competitive exclusion principle. Science 131: 1292–1297.CrossRefPubMedGoogle Scholar
  10. Hejzlar, J. & V. Vyhnálek, 1998. Longitudinal heterogeneity of phosphorus and phytoplankton concentrations in deep-valley reservoirs. International Review of Hydrobiology 83: 139–146.CrossRefGoogle Scholar
  11. Hladík, M. & J. Kubečka, 2003. Fish migration between a temperate reservoir and its main tributary. Hydrobiologia 504: 251–266.CrossRefGoogle Scholar
  12. Hurst, T. P., 2007. Causes and consequences of winter mortality in fishes. Review paper. Journal of Fish Biology 71: 315–345.CrossRefGoogle Scholar
  13. Irwin, E. R. & R. L. Noble, 2000. Diel distribution of age-0 largemouth bass, Micropterus salmoides, in B. E. Jordan Lake, North Carolina (USA) and its relation to cover. Ecology of Freshwater Fish 9: 229–235.CrossRefGoogle Scholar
  14. Järvalt, A., T. Krause & A. Palm, 2005. Diel migration and spatial distribution of fish in a small stratified lake. Hydrobiologia 547: 197–203.CrossRefGoogle Scholar
  15. Jeppesen, E., J. P. Jensen, M. Sodergaard & T. Lauridsen, 2005. Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics. Freshwater Biology 50: 1616–1627.CrossRefGoogle Scholar
  16. Jůza, T. & J. Kubečka, 2007. The efficiency of three fry trawls for sampling the freshwater pelagic fry community. Fisheries Research 85: 285–290.CrossRefGoogle Scholar
  17. Jůza, T., M. Vašek, J. Kubečka, J. Seďa, J. Matěna, M. Prchalová, J. Peterka, M. Říha, O. Jarolím, M. Tušer, M. Kratochvíl, M. Čech, V. Draštík, J. Frouzová, E. Hohausová & J. Žaloudík, 2009. Pelagic underyearling communities in a canyon-shaped reservoir in late summer. Journal of Limnology 68: 304–314.CrossRefGoogle Scholar
  18. Jůza, T., M. Vašek, M. Kratochvíl, P. Blabolil, M. Čech, V. Draštík, J. Frouzová, M. Muška, J. Peterka, M. Prchalová, M. Říha, M. Tušer & J. Kubečka, 2014. Chaos and stability of age-0 fish assemblages in a temperate deep reservoir: unpredictable success and stable habitat use. Hydrobiologia 724: 217–234.CrossRefGoogle Scholar
  19. Kahl, U. & R. J. Radke, 2006. Habitat and food resource use of perch and roach in a deep mesotrophic reservoir: enough space to avoid competition? Ecology of Freshwater Fish 15: 48–56.CrossRefGoogle Scholar
  20. Kottelat, M. & J. Freyhof, 2007. Handbook of European Freshwater Fishes. Kottelat, Cornol, Switzerland and Freyhof, Berlin: 646.Google Scholar
  21. Kubečka, J., 1993. Succession of fish communities in reservoirs of Central and Eastern Europe. In Straškraba, M., J. G. Tundisi & A. Duncan (eds), Comparative reservoir limnology and water quality management. Kluwer Academic Publishers, Dordrecht: 153–168.CrossRefGoogle Scholar
  22. Kucharczyk, D., M. Luczynski, R. Kujawa & P. Czerkies, 1997. Effect of temperature on embryonic and larval development of bream (Abramis brama L.). Aquatic Sciences 59: 214–224.Google Scholar
  23. Kujawa, R., G. Furgała-Selezniow, A. Mamcarz, M. Lach & D. Kucharczyk, 2015. Influence of temperature on the growth and survivability of sichel larvae Pelecus cultratus reared under controlled conditions. Ichthyological Research 62(2): 163–170.CrossRefGoogle Scholar
  24. Lehtonen, H., L. Urho & J. Kjellman, 1998. Responses of ruffe (Gymnocephalus cernuus (L.)) abundance to eutrophication. Journal of Great Lakes Research 24: 285–292.CrossRefGoogle Scholar
  25. Lind, O. T., T. T. Terrel & B. L. Kimmel, 1993. Problems in reservoir trophic-state classification and implications for reservoir management. In Straškraba, M., J. G. Tundisi & A. Duncan (eds), Comparative reservoir limnology and water quality management. Kluwer Academic Publishers, Dordrecht: 56–67.Google Scholar
  26. Massol, F., P. David, D. Gerdeaux & P. Jarne, 2007. The influence of trophic status and large-scale climatic change on the structure of fish communities in Perialpine lakes. Journal of Animal Ecology 76: 538–551.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Masson, S. N., N. Angeli, J. Guillard & B. Pinel-Alloul, 2001. Diel vertical and horizontal distribution of crustacean zooplankton and young of the year fish in a sub-alpine lake: an approach based on high frequency sampling. Journal of Plankton Research 23: 1041–1060.CrossRefGoogle Scholar
  28. Michelsen, K., J. Pedersen, K. Christofferesen & F. Jensen, 1993. Ecological consequences of food partitioning for the fish population structure in a eutrophic lake. Hydrobiologia 291: 35–45.CrossRefGoogle Scholar
  29. Munz, F. W., 1971. Vision: visual pigments. In Hoar, W. S. & D. J. Randall (eds), Fish physiology. Academic press, New York: 599.Google Scholar
  30. Olin, M., M. Rask, J. Ruuhijärvi, M. Kurkilahti, P. Ala-Opas & O. Ylönen, 2002. Fish community structure in mesotrophic and eutrophic lakes of southern Finland: the relative abundances of percids and cyprinids along a trophic gradient. Journal of Fish Biology 60: 593–612.CrossRefGoogle Scholar
  31. Oliveira, E. F., E. Goulart & C. V. Minte-Vera, 2004. Fish diversity along spatial gradients in the Itaipu Reservoir, Parána, Brazil. Brazilian Journal of Biology 64: 447–458.CrossRefGoogle Scholar
  32. Pankhurst, N. W. & P. L. Munday, 2011. Effect of climate change on fish reproduction and early life history stages. Marine and Freshwater Research 62: 1015–1026.CrossRefGoogle Scholar
  33. Persson, L., 1983. Effect of intra- and interspecific competition on dynamics and size structure of a perch Perca fluviatilis and roach Rutilus rutilus population. Oikos 41: 126–132.CrossRefGoogle Scholar
  34. Persson, L., 1986. Temperature-induced shift in foraging ability in two fish species, roach (Rutilus rutilus) and perch (Perca fluviatilis): implications for coexistence between poikilotherms. Journal of Animal Ecology 55: 829–839.CrossRefGoogle Scholar
  35. Persson, L., G. Andersson, S. F. Hamrin & L. Johansson, 1988. Predation regulation and primary production along the productivity gradient of temperate lake ecosystems. In Carpenter, S. R. (ed.), Complex interactions in lake communities. Springe Verlag, New York: 45–65.CrossRefGoogle Scholar
  36. Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1991. Shifts in fish communities along the productivity gradient of temperate lakes: patterns and the importance of size structured interactions. Journal of Fish Biology 38: 281–293.CrossRefGoogle Scholar
  37. Prchalová, M., J. Kubečka, M. Vašek, J. Peterka, J. Seďa, T. Jůza, M. Říha, O. Jarolím, M. Tušer, M. Kratochvíl, M. Čech, V. Draštík, J. Frouzová & E. Hohausová, 2008. Patterns of fish distribution in canyon-shaped reservoirs. Journal of Fish Biology 73: 54–78.CrossRefGoogle Scholar
  38. Prchalová, M., J. Kubečka, M. Čech, J. Frouzová, V. Draštík, E. Hohausová, T. Jůza, M. Kratochvíl, J. Matěna, J. Peterka, M. Říha, M. Tušer & M. Vašek, 2009. The effect of depth, distance from dam and habitat on spatial distribution of fish in an artificial reservoir. Ecology of Freshwater Fish 18: 247–260.CrossRefGoogle Scholar
  39. R Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  40. Rychtecký, P. & P. Znachor, 2011. Spatial heterogeneity and seasonal succession of phytoplankton along the longitudinal gradient in a eutrophic reservoir. Hydrobiologia 663: 175–186.CrossRefGoogle Scholar
  41. Říha, M., J. Kubečka, M. Prchalová, T. Mrkvička, M. Čech, V. Draštík, J. Frouzová, E. Hohausová, T. Jůza, M. Kratochvíl, J. Peterka, M. Tušer & M. Vašek, 2011. The influence of diel period on fish assemblage in the unstructured littoral of reservoirs. Fisheries Management and Ecology 18: 339–347.CrossRefGoogle Scholar
  42. Seďa, J. & M. Devetter, 2000. Zooplankton community structure along a trophic gradient in a canyon-shaped dam reservoir. Journal of Plankton Research. 22: 1829–1840.CrossRefGoogle Scholar
  43. Van Dijk, P. L. M., G. Staaks & I. Hardewig, 2002. The effect of fasting and refeeding on temperature preference, activity and growth of roach, Rutilus rutilus. Oecologia 130: 496–504.CrossRefGoogle Scholar
  44. Vašek, M., J. Kubečka, J. Peterka, M. Čech, V. Draštík, M. Hladík, M. Prchalová & J. Frouzová, 2004. Longitudinal and vertical spatial gradients in the distribution of fish within a canyon-shaped reservoir. International Review of Hydrobiology 89: 352–362.CrossRefGoogle Scholar
  45. Vašek, M., J. Kubečka, J. Matěna & J. Seďa, 2006. Distribution and diet of 0+ fish within a canyon-shaped European reservoir in late summer. International Review of Hydrobiology 91: 178–194.CrossRefGoogle Scholar
  46. Wang, N., X. Xu & P. Kestemont, 2009. Effect of temperature and feeding frequency on growth performances, feeding efficiency and body composition of pikeperch juveniles (Sander lucioperca). Aquaculture 289: 70–73.CrossRefGoogle Scholar
  47. Wysujack, K., P. Kasprzak, U. Laude & T. Mehner, 2002. Management of a pikeperch stock in a long-term biomanipulated stratified lake: efficient predation versus low recruitment. Hydrobiologia 479: 169–180.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tomáš Jůza
    • 1
  • Daniel Ricard
    • 1
  • Petr Blabolil
    • 1
  • Martin Čech
    • 1
  • Vladislav Draštík
    • 1
  • Jaroslava Frouzová
    • 1
  • Milan Muška
    • 1
  • Jiří Peterka
    • 1
  • Marie Prchalová
    • 1
  • Milan Říha
    • 1
  • Zuzana Sajdlová
    • 1
  • Marek Šmejkal
    • 1
  • Michal Tušer
    • 1
  • Mojmír Vašek
    • 1
  • Lukáš Vejřík
    • 1
  • Jan Kubečka
    • 1
  1. 1.Biology Centre of the Czech Academy of Sciences v.v.i.Institute of HydrobiologyČeské BudějoviceCzech Republic

Personalised recommendations