Advertisement

Hydrobiologia

, Volume 758, Issue 1, pp 197–209 | Cite as

Impact of freshwater inputs on the spatial structure of benthic macroinvertebrate communities in two landlocked coastal lagoons

  • P. M. Félix
  • M. J. Correia
  • P. Chainho
  • J. L. Costa
  • M. L. Chaves
  • T. Cruz
  • J. J. Castro
  • C. Mirra
  • I. Domingos
  • A. C. F. Silva
  • L. Cancela da Fonseca
Primary Research Paper

Abstract

Landlocked lagoons are naturally stressed environments. They are strongly influenced by freshwater input which not only varies naturally, but which is also impacted by anthropogenic activities. This study investigated the direct influence of freshwater discharges on the distribution patterns and abundance of benthic communities in two neighbouring landlocked coastal lagoons, assessing the whole system and the confluence area of each tributary. Sampling occurred in the wet and dry seasons of 2011 at two distances from freshwater discharge locations. Both lagoons were colonized by species from two different pools, freshwater and marine. Freshwater flow rates had a direct influence on the spatial structure of the benthic communities of brackish-water/freshwater interface areas, where also specific taxa can act as early indicators of freshwater input variations. The intensity of this influence is highly dependent on lagoon size, creating spatial heterogeneity or affecting the entire system. The benthic fauna at the confluence of the tributary that depends almost exclusively on groundwater showed the lowest variability, suggesting that the biogeochemical nature of the groundwater may be a central cause for setting specific ecotones. The results suggest that benthic communities of landlocked coastal lagoons can be highly impacted by flow reduction from freshwater aquifers under drought conditions or water abstraction activities.

Keywords

Macroinvertebrates Spatial distribution Groundwater Brackish systems Freshwater influence Interface areas 

Notes

Acknowledgments

The authors acknowledge the research funding of the project GroundScene—“Modeling scenarios of exploitation in coastal aquifers: effects on biodiversity of lagoons and their streams as groundwater dependent ecosystems” (PTDC/AAC-AMB/104639/2008), the Strategic Project (PEst-OE/FIS/UI0275/2011) and the Post Doc fellowship SFRH/BPD/29579/2006 all funded by FCT (Fundação para a Ciência e Tecnologia).

References

  1. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.Google Scholar
  2. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth: 213.Google Scholar
  3. Bamber, R. N., P. M. Gilliland & E. A. Shardlow, 2001. Saline Lagoons: A Guide to Their Management and Creation. English Nature, Peterborough.Google Scholar
  4. Beer, N. A. & C. Joyce, 2013. North Atlantic coastal lagoons: conservation, management and research challenges in the 21st century. Hydrobiologia 701: 1–11.CrossRefGoogle Scholar
  5. Basset, A., N. Galuppo & L. Sabetta, 2006. Environmental heterogeneity and benthic macroinvertebrate guilds in italian lagoons. Transitional Waters Bulletin 1: 48–63.Google Scholar
  6. Cancela da Fonseca, L., A. M. Costa & J. M. Bernardo, 1989. Seasonal variation of benthic and fish communities in a shallow land-locked coastal lagoon (St. André, SW Portugal). Scientia Marina 53: 663–669.Google Scholar
  7. Cancela da Fonseca, L., J. M. Bernardo, A. M. Costa, M. Falcão & C. Vale, 2001a. Seasonal Chemical changes and eutrophication of a land-locked coastal lagoon (St. André, SW Portugal). Boletim do Museu Municipal Funchal 6: 167–183.Google Scholar
  8. Cancela da Fonseca, L., P. Duarte & F. Magalhães, 2001b. Trophic group patterns of Macrobenthos in brackish coastal systems. Boletim do Museu Municipal Funchal 6: 139–165.Google Scholar
  9. Clarke, K.R. & R.N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.Google Scholar
  10. Cañedo-Argüelles, M. & M. Rieradevall, 2010. Disturbance caused by freshwater releases of different magnitude on the aquatic macroinvertebrate communities of two coastal lagoons. Estuarine, Coastal and Shelf Science 88: 190–198.CrossRefGoogle Scholar
  11. Casagranda, C., C.F. Boudouresque & P. Francour, 2006. Trophic flows in the macroinvertebrate community of a Mediterranean brackish lagoon, Lake Ichkeul (Tunisia) using a functional model. Proceedings of the international workshop on “The Protection of Coastal and Marine Environment”: 153–162.Google Scholar
  12. Correia, M. J., J. L. Costa, P. Chainho, P. M. Félix, M. L. Chaves, J. P. Medeiros, G. Silva, C. Azeda, P. Tavares, A. Costa, A. M. Costa, J. Bernardo, H. N. Cabral, M. J. Costa & L. Cancela da Fonseca, 2012. Inter-annual variations of macrobenthic communities over three decades in a land-locked coastal lagoon (Santo André, SW Portugal). Estuarine Coastal and Shelf Science 110: 168–175.CrossRefGoogle Scholar
  13. Costa, A. M., L. Cancela da Fonseca & M. Cristo, 2003. Annual cycle of the benthic community of a coastal lagoon: Lagoa de Melides (Grândola, SW Portugal). Revista de Biologia 21: 71–89.Google Scholar
  14. Duarte, P., M. F. Macedo & L. Cancela da Fonseca, 2006. The relationship between phytoplankton diversity and community function in a coastal lagoon. Hydrobiologia 555: 3–18.CrossRefGoogle Scholar
  15. Elliott, M. & A. K. Whitfield, 2011. Challenging paradigms in estuarine ecology and management. Estuarine Coastal and Shelf Science 94: 306–314.CrossRefGoogle Scholar
  16. Félix, P. M., P. Chainho, J. L. Costa, M. J. Correia, M. L. Chaves, J. P. Medeiros, H. N. Cabral, N. Wouters, J. Bernardo, A. M. Costa, M. Cristo, G. Silva, C. Azeda, P. Tavares, M. J. Costa & L. Cancela da Fonseca, 2013a. Short-term versus long-term changes in the benthic communities of a small coastal lagoon: implications for ecological status assessment. Vie Milieu 63: 11–22.Google Scholar
  17. Félix, P. M., M. J. Correia, P. Chainho, M. J. Costa, H. N. Cabral, I. Domingos, J. L. Costa & L. Cancela da Fonseca, 2013b. Influence of streams discharges on the structure of fish communities of Portuguese land-locked coastal lagoons. Cahiers de Biologie Marine 54: 427–435.Google Scholar
  18. Grasshoff, K., M. Ehrhardt, K. Kremling & T. Almgren, 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim.Google Scholar
  19. Healy, B., 2003. Coastal lagoons. In Otte, M. L. (ed.), Wetlands of Ireland. Distribution, Ecology, Uses and Economic Value. University College Dublin Press, Dublin: 51–78.Google Scholar
  20. Heydorn, A. E. F. & K. L. Tinley, 1980. Estuaries of the Cape, Part I. Synopsis of the Cape Coast. Natural features, dynamics and utilization. CSIR Research Report 380: 1–97.Google Scholar
  21. Kjerfve, B., 1994. Coastal lagoon processes. Elsevier Oceanography Series. Elsevier, Amsterdam.Google Scholar
  22. Klein Tank, A. M. G. & G. P. Können, 2003. Trends in indices of daily temperature and precipitation extremes in Europe, 1946–1999. Journal of Climate 16: 3665–3680.CrossRefGoogle Scholar
  23. Lorenzen, C., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.CrossRefGoogle Scholar
  24. Loureiro, I. M., M. C. Cabral & F. Fatela, 2009. Marine influence in ostracod assemblages of the Mira river estuary: comparison between lower and mid estuary tidal marsh transects. Journal of Coastal Research SI56: 1365–1369.Google Scholar
  25. Martins, M. J. F., T. Namiotko, M. C. Cabral, F. Fatela & M. J. Boavida, 2010. Contribution to the knowledge of the freshwater Ostracoda fauna in continental Portugal, with an updated checklist of Recent and Quaternary species. Journal of Limnology 69: 160–173.CrossRefGoogle Scholar
  26. Medina-Gómez, I. & J. A. Herrera-Silveira, 2006. Primary production dynamics in a pristine groundwater influenced coastal lagoon of the Yucatan Peninsula. Continental Shelf Research 26: 971–986.CrossRefGoogle Scholar
  27. Moita, I., 1985. Carta dos sedimentos superficiais da Plataforma Continental: Cabo S. Vicente ao Rio Guadiana (SED 7 e 8), 1st ed. Instituto Hidrográfico, Lisbon.Google Scholar
  28. Monteiro, J.P., A. Chambel &J. Martins, 2008. Conceptual and Numerical Flow Model of the Sines Aquifer System (Alentejo, South Portugal). Proceedings of the International Groundwater Symposium. International Association of Hydraulic Engineering and Research (IAHR): 76–84.Google Scholar
  29. Oyedele, K. F. & E. I. Momoh, 2009. Evaluation of Sea water intrusion in freshwater aquifers in a Lagoon Coast: a case study of the University of Lagos Lagoon, Akoka, Nigeria. New York Science Journal 2: 32–42.Google Scholar
  30. Silva, A. C. F., P. Tavares, M. Shapouri, T. Y. Stigter, J. P. Monteiro, M. Machado, L. Cancela da Fonseca & L. Ribeiro, 2012. Estuarine biodiversity as an indicator of groundwater discharge. Estuarine, Coastal and Shelf Science 97: 38–43.CrossRefGoogle Scholar
  31. Smith, N.P. 1994. Water, salt, and heat balances of coastal lagoons. In Kjerfve, B. (ed), Coastal lagoon processes. Elsevier Oceanography Series 60, Amsterdam: 69–101.Google Scholar
  32. Viaroli, P., P. Lasserre & P. Campostrini, 2010. Lagoons and coastal wetlands in the global change context: impact and management issues. Developments in Hydrobiology 192: 1–170.CrossRefGoogle Scholar
  33. Young, M. B., M. E. Gonneea, D. A. Fong, W. S. Moore, J. Herrera-Silveira & A. Paytan, 2008. Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using radium isotopes and water chemistry. Marine Chemistry 109: 377–394.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • P. M. Félix
    • 1
  • M. J. Correia
    • 1
  • P. Chainho
    • 1
  • J. L. Costa
    • 1
    • 2
  • M. L. Chaves
    • 1
  • T. Cruz
    • 3
    • 4
  • J. J. Castro
    • 3
    • 4
  • C. Mirra
    • 1
  • I. Domingos
    • 1
    • 2
  • A. C. F. Silva
    • 5
  • L. Cancela da Fonseca
    • 6
    • 7
  1. 1.MARE – Marine and Environmental Sciences CentreFaculdade de Ciências da Universidade de LisboaLisbonPortugal
  2. 2.Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  3. 3.MARE – Marine and Environmental Sciences Centre, Laboratório de Ciências do MarUniversidade de ÉvoraSinesPortugal
  4. 4.Departamento de BiologiaUniversidade de ÉvoraÉvoraPortugal
  5. 5.CEris (CEHIDRO)Instituto Superior Técnico-Universidade de LisboaLisbonPortugal
  6. 6.Centro de Ciências e Tecnologias da ÁguaUniversidade do AlgarveFaroPortugal
  7. 7.MARE – Marine and Environmental Sciences CentreLaboratório Marítimo da GuiaCascaisPortugal

Personalised recommendations