, Volume 757, Issue 1, pp 101–115 | Cite as

Greenhouse gas emission and storage in a small shallow lake

  • M. BartosiewiczEmail author
  • I. Laurion
  • S. MacIntyre
Primary Research Paper


Small lakes are likely to show considerable temporal variability in greenhouse gas emissions given their transient stratification and short residence time. To determine the extent that CO2 and CH4 emission and storage depends on surface meteorology, we studied a shallow lake during 2 years with contrasting rainfall and thermal stratification. Gas fluxes were estimated with wind-based and surface renewal models and compared to direct measurements obtained with floating chambers. The assessment of greenhouse gases storage revealed that the lake gained CO2 in association with rainfall in both the rainier (2011) and drier summer (2012). In 2011, stratification was less extensive and disrupted frequently. The lake was a source of CO2 and CH4, and ebullition exceeded diffusive fluxes of CH4. In 2012, stratification was more persistent, the lake was a sink for CO2 during dry periods, CO2 and CH4 accumulated in the hypolimnion later in the summer when rainfall increased, diffusive fluxes of CH4 were similar to those in 2011 mid-summer and over four times higher during overturn. Ebullition was lower in the drier summer. Fluxes measured with chambers were closer to estimations from the surface renewal model and about two times values estimated with wind-based models.


Small lake Weather variability Thermal stratification Greenhouse gases Storage Diffusive flux Ebullition Gas transfer modeling 



We would like to express our gratitude to V. Sauter, X. Egler, P. Michaud, A. Przytulska, K. Hudelson and K. Negandhi for their help in the field, E. W. Tedford and A. T. Crowe for their help with computations, and to two anonymous Reviewers and J. Melack who made constructive comments on earlier drafts. The study was supported by a NSERC Discovery Grant to IL, U.S. National Science Foundation Grants DEB 0919603 and ARC 1204267 to SM, and a GRIL supporting scholarship to MB.


  1. Aberg, J., M. Jansson & A. Jonsson, 2010. Importance of water temperature and thermal stratification dynamics for temporal variation of surface water CO2 in a boreal lake. Journal of Geophysical Research 115: G02024.CrossRefGoogle Scholar
  2. Banerjee, S. & S. MacIntyre, 2004. The air–water interface: turbulence and scalar exchange. Advances in Ocean and Coastal Engineering 9: 181–237.CrossRefGoogle Scholar
  3. Bastviken, D., J. Ejlertsson, I. Sundh & L. Tranvik, 2003. Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84: 969–981.CrossRefGoogle Scholar
  4. Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill & A. Enrich-Prast, 2011. Freshwater methane emissions offset the continental carbon sink. Science 331: 50.CrossRefPubMedGoogle Scholar
  5. Bussmann, I., 2005. Methane release through suspension of littoral sediment. Biogeochemistry 74: 283–302.CrossRefGoogle Scholar
  6. Casper, P., S. C. Maberly, G. H. Hall & B. J. Finlay, 2000. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49: 1–19.CrossRefGoogle Scholar
  7. Cole, J. J. & N. Caraco, 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography 43: 647–656.CrossRefGoogle Scholar
  8. Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.CrossRefGoogle Scholar
  9. Crusius, J. & R. Wanninkhof, 2003. Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography 48: 1010–1017.CrossRefGoogle Scholar
  10. Csanady, G. T., 1990. The role of breaking wavelets in air–sea gas transfer. Journal of Geophysical Research 95: 749–759.CrossRefGoogle Scholar
  11. DelSontro, T., D. F. McGinnis, S. Sokek, I. Ostrovsky & B. Wehrli, 2010. Extreme methane emissions from a Swiss Hydropower Reservoir: contribution from bubbling sediments. Environmental Science and Technology 44: 2419–2425.CrossRefPubMedGoogle Scholar
  12. Downing, J. A., 2010. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29: 9–24.Google Scholar
  13. Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.CrossRefGoogle Scholar
  14. Fechner-Levy, E. & H. F. Hemond, 1996. Trapped methane volume and potential effects on methane ebullition in a northern peatland. Limnology and Oceanography 41: 1375–1383.CrossRefGoogle Scholar
  15. Fernández, J., F. Peeters & H. Hofmann, 2014. The importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake. Environmental Science and Technology 48: 7297–7304.CrossRefGoogle Scholar
  16. Heiskanen, J. J., I. Mammarella, S. Haapanala, J. Pumpanen, T. Vesala, S. MacIntyre & A. Ojala, 2014. Effects of cooling and internal wave motions on gas transfer coefficients in a boreal lake. Tellus B 66: 22827.CrossRefGoogle Scholar
  17. Hesslein, R. H., J. W. M. Rudd, C. Kelly, P. Ramlal & K. A. Hallard, 1991. Carbon dioxide pressure in surface waters of Canadian lakes. In Wilhelms, S. C. & J. S. Gulliver (eds), Air–Water Mass Transfer: Selected Papers from the Second International Symposium on Gas Transfer at Water Surfaces. American Society of Civil Engineering, New York: 413–431.Google Scholar
  18. Hofmann, H., L. Federwisch & F. Peeters, 2010. Wave-induced release of methane: littoral zones as a source of methane in lakes. Limnology and Oceanography 55: 1990–2000.CrossRefGoogle Scholar
  19. Huttunen, J. T., J. Alm, A. Liikanen, S. Juutinen, T. Larmola, T. Hammar, J. Silvola & P. J. Martikainen, 2003. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52: 609–621.CrossRefPubMedGoogle Scholar
  20. Huttunen, J. T., T. S. Valsanen, S. K. Hellsten & P. J. Martikainen, 2006. Methane fluxes at the sediment–water interface in some boreal lakes and reservoirs. Boreal Environment Research 11: 27–34.Google Scholar
  21. Imberger, J., 1998. Flux paths in a stratified lake: A review. In J. Imberger (ed), Physical processes in Lakes and Oceans, pp. 1–17. AGU, Washington, DC.Google Scholar
  22. International Panel on Climate Change (IPCC), 2007. The physical science basis: summary for policymakers. Fourth Assessment Report. Cambridge University Press.Google Scholar
  23. Jahne, B., K. O. Munnich, R. Bosinger, A. Dutz, W. Huber & P. Libner, 1987. On parameters influencing air–water gas exchange. Journal of Geophysical Research 92: 1937–1949.CrossRefGoogle Scholar
  24. Juutinen, S., M. Rantakari, P. Kortelainen, J. T. Huttunen, T. Larmola, J. Alm, J. Silvola & P. J. Martikainen, 2009. Methane dynamics in different boreal lake types. Biogeosciences 6: 209–223.CrossRefGoogle Scholar
  25. Kankaala, P., J. L. Bellido, A. Ojala, T. Tulonen & R. I. Jones, 2013. Lake size and water-column stability affect the importance of methane for pelagic food webs of boreal lakes. Geophysical Research Abstracts 15, EGU2013–2268.Google Scholar
  26. Kling, G. W., G. W. Kipphut & M. C. Miller, 1992. The flux of CO2 and CH4 from lakes and rivers in arctic Alaska. Hydrobiologia 240: 23–36.CrossRefGoogle Scholar
  27. Kortelainen, P., M. Rantakari, J. Huttunen, T. Mattsson, J. Alm, S. Juutinen, T. Larmola, J. Silvola & P. J. Martikainen, 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology 12: 1554–1567.CrossRefGoogle Scholar
  28. Laurion, I., W. F. Vincent, S. MacIntyre, L. Retamal, C. Dupont, P. Francus & R. Pienitz, 2010. Variability in greenhouse gas emissions from permafrost thaw ponds. Limnology and Oceanography 55: 115–133.CrossRefGoogle Scholar
  29. MacIntyre, S., 1993. Vertical mixing in a shallow, eutrophic lake: possible consequences for the light climate of phytoplankton. Limnology and Oceanography 38: 798–817.CrossRefGoogle Scholar
  30. MacIntyre, S., R. Wanninkhof & J. P. Chanton, 1995. Trace gas exchange across the air–water interface in freshwater and coastal marine environments. In Matson, P. A. & R. C. Harris (eds), Methods in Ecology Biogenic Trace Gasses: Measuring Emissions from Soil and Water. Blackwell Science, Oxford: 52–97.Google Scholar
  31. MacIntyre, S., K. M. Flynn, R. Jellison & J. R. Romero, 1999. Boundary mixing and nutrient flux in Mono Lake, CA. Limnology and Oceanography 44: 512–529.CrossRefGoogle Scholar
  32. MacIntyre, S., J. R. Romero & G. W. Kling, 2002. Spatial–temporal variability in mixed layer deepening and lateral advection in an embayment of Lake Victoria, East Africa. Limnology and Oceanography 47: 656–671.CrossRefGoogle Scholar
  33. MacIntyre, S., J. P. Fram, P. J. Kushner, N. D. Bettez, W. J. O’Brien, J. E. Hobbie & G. W. Kling, 2009. Climate-related variations in mixing dynamics in an Alaskan arctic lake. Limnology and Oceanography 54: 2401–2417.CrossRefGoogle Scholar
  34. MacIntyre, S., A. Jonsson, M. Jansson, J. Aberg, D. E. Turney & S. D. Miller, 2010. Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters 37: L24604.CrossRefGoogle Scholar
  35. MacIntyre, S., J. R. Romero, G. M. Silsbe & B. M. Emery, 2014. Stratification and horizontal exchanges in Lake Victoria, East Africa. Limnology and Oceanography 59: 1805–1838.CrossRefGoogle Scholar
  36. Martinez, D. & M. A. Anderson, 2013. Methane production and ebullition in a shallow, artificially aerated eutrophic temperate lake (Lake Elsinore, CA). Science of the Total Environment 454: 457–465.CrossRefPubMedGoogle Scholar
  37. Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura & H. Zhang, 2013. Anthropogenic and natural radiative forcing. In Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (eds), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  38. Natchimuthu, S., B. Panneer Selvam & D. Bastviken, 2014. Influence of weather variables on methane and carbon dioxide flux from a shallow pond. Biogeochemistry 119: 403–413.CrossRefGoogle Scholar
  39. Ojala, A., J. L. Bellido, T. Tulonen, P. Kankaala & J. Huotari, 2011. Carbon gas fluxes from a brown-water and a clear water lake in the boreal zone during a summer with extreme rain events. Limnology and Oceanography 56: 61–76.CrossRefGoogle Scholar
  40. Ostrovsky, I., D. F. McGinnis, L. Lapidus & W. Eckert, 2008. Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake. Limnology and Oceanography Methods 6: 18.CrossRefGoogle Scholar
  41. Raymond, P. A., J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald, M. Hoover, D. Butman, R. Striegl, E. Mayorga, C. Humborg, et al., 2013. Global carbon dioxide emissions from inland waters. Nature 503: 355–359.CrossRefPubMedGoogle Scholar
  42. Repo, M. E., J. T. Huttunen, A. V. Naumov, A. V. Chichulin, E. D. Lapshina, W. Bleuten & P. J. Martikainen, 2007. Release of CO2 and CH4 from small wetland lakes in western Siberia. Tellus B 59: 788–796.CrossRefGoogle Scholar
  43. Roulet, N. T., P. M. Crill, N. T. Comer, A. Dove & R. A. Bourbonniere, 1997. CO2 and CH4 flux between a boreal beaver pond and the atmosphere. Journal of Geophysical Research 102: 29313–29319.CrossRefGoogle Scholar
  44. Rudd, J. W. & R. D. Hamilton, 1975. Factors controlling rates of methane oxidation and the distribution of the methane oxidizers in a small stratified lake. Archiv fur Hydrobiologie 75: 522–538.Google Scholar
  45. Rudd, J. W. M. & R. D. Hamilton, 1978. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnology and Oceanography 23: 337–348.CrossRefGoogle Scholar
  46. Rypdal, K. & W. Winiwarter, 2001. Uncertainties in greenhouse gas emission inventories: evaluation, comparability, and implications. Environmental Science and Policy 4: 107–116.CrossRefGoogle Scholar
  47. Sanseverino, A. M., D. Bastviken, I. Sundh, J. Pickova & A. Enrich-Prast, 2012. Methane carbon supports aquatic food webs to the fish level. PLoS ONE 7: e42723.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Schubert, C. J., T. Diem & W. Eugster, 2012. Methane emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels and boundary model calculations: a comparison. Environmental Science & Technology 46: 4515–4522.CrossRefGoogle Scholar
  49. Shakhova, N., I. Semiletov, I. Leifer, V. Sergienko, A. Salyuk, D. Kosmach & Ö. Gustafsson, 2014. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience 7: 64–70.CrossRefGoogle Scholar
  50. Smith, S. D., 1988. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. Journal of Geophysical Research 93: 15467–15472.CrossRefGoogle Scholar
  51. Soja, G., B. Kitzler & A. M. Soja, 2014. Emissions of greenhouse gases from Lake Neusiedl, a shallow steppe lake in Eastern Austria. Hydrobiologia 731: 125–138.CrossRefGoogle Scholar
  52. Tedford, E. W., S. MacIntyre, S. D. Miller & M. J. Czikowsky, 2014. Similarity scaling of turbulence in a temperate lake during fall cooling. Journal of Geophysical Research. doi: 10.1002/2014JC010135.Google Scholar
  53. Tokida, T., M. Mizoguchi, T. Miyazaki, A. Kagemoto, O. Nagata & R. Hatano, 2007. Episodic release of methane bubbles from peatland during spring thaw. Chemosphere 70: 165–171.CrossRefPubMedGoogle Scholar
  54. Vesala, T., J. Huotari, U. Rannik, T. Suni, S. Smolander, A. Sogachev, S. Launiainen & A. Ojala, 2006. Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. Journal of Geophysical Research 111: D11101. doi: 10.1029/2005JD006365.CrossRefGoogle Scholar
  55. Wand, U., V. A. Samarkin, H. M. Nitzsche & H. W. Hubberten, 2006. Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica. Limnology and Oceanography 51: 1180–1194.CrossRefGoogle Scholar
  56. Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97: 7373–7382.Google Scholar
  57. Weyhenmeyer, C. E., 1999. Methane emissions from beaver ponds: rates, patterns, and transport mechanisms. Global Biogeochemical Cycles 13: 1079–1090.CrossRefGoogle Scholar
  58. Whiticar, M. J., E. Faber & M. Schoell, 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotopic evidence. Geochimica et Cosmochimica Acta 50: 693–709.CrossRefGoogle Scholar
  59. Wik, M., P. M. Crill, R. K. Varner & D. Bastviken, 2013. Multiyear measurements of ebullitive methane flux from three subarctic lakes. Journal of Geophysical Research 118: 1307–1321.Google Scholar
  60. Wik, M., B. F. Thornton, D. Bastviken, S. MacIntyre, R. K. Varner & P. M. Crill, 2014. Energy input is primary controller of methane bubbling in subarctic lakes. Geophysical Research Letters 41: 555–560.CrossRefGoogle Scholar
  61. Wilhelm, S. & R. Adrian, 2008. Impact of summer warming on the thermal characteristics of a polymictic lake: consequences for oxygen, nutrients and phytoplankton. Freshwater Biology 53: 226–237.CrossRefGoogle Scholar
  62. Wintermans, J. F. G. M. & A. De Mots, 1965. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta 109: 448–453. (Biochimica et Biophysica Acta (BBA)-biophysics including photosynthesis).CrossRefPubMedGoogle Scholar
  63. Zappa, C. J., W. R. McGillis, P. A. Raymond, J. B. Edson, E. J. Hintsa, H. J. Zemmelink, J. W. H. Dacey & D. T. Ho, 2007. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophysical Research Letters 34: L10601.CrossRefGoogle Scholar
  64. Zeikus, J. G. & M. R. Winfrey, 1976. Temperature limitations of methanogenesis in aquatic sediments. Applied and Environmental Microbiology 31: 99–107.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut National de la Recherche ScientifiqueCentre Eau Terre EnvironnementQuebecCanada
  2. 2.Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL)Université de MontréalMontrealCanada
  3. 3.Earth Research InstituteUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations