, Volume 755, Issue 1, pp 173–182 | Cite as

Littoral zooplankton–water hyacinth interactions: habitat or refuge?

  • Aideé Montiel-Martínez
  • Jorge Ciros-Pérez
  • Gabriel Corkidi
Primary Research Paper


Water hyacinth (Eichhornia crassipes) is one of the most problematic invasive macrophyte in the world. Although it has become a key element of the systems where it was introduced several decades ago, there is insufficient information to determine its role on biological interactions. To elucidate water hyacinth–littoral zooplankton–planktivorous fish interactions, we conducted habitat choice experiments in the absence and presence of fish chemical cues (kairomones) for two tropical littoral cladocerans, Chydorus brevilabris and Simocephalus vetulus. We classified habitat selection as a habitat (preference for the plant without predation risk) and/or as a refuge (preference for the plant with predation risk). Our results showed that E. crassipes is used as a habitat by C. brevilabris and as a refuge by S. vetulus against fish predation. Although C. brevilabris did not use the water hyacinth as a refuge in the presence of kairomones, the results suggested that both C. brevilabris and S. vetulus exhibited behavioral responses that further reduced their predation risk. To our knowledge, this study is the first experimental evidence for littoral cladocerans using free-floating macrophytes as a refuge against fish predation in tropical systems. Our results support the assertion that habitat association is not necessarily an evidence of habitat preference.


Eichhornia crassipes Fish kairomones Habitat choice Inducible behavior Predator–prey interactions 



We are grateful to Roberto Altamirano and Raquel González for their assistance during the fieldwork. AMM is a fellow of the Doctoral Program in Biological Sciences, UNAM and thanks Consejo Nacional de Ciencia y Tecnología (CONACYT) for a doctoral scholarship, Grant 49453. This work was founded by grants UNAM-PAPIIT IN217513 and CONACYT 224893. We thank Mariana Meerhoff, Elizabeth Walsh and two anonymous referees for very useful comments on an earlier version of the manuscript. We are deeply grateful to Prof. Elizabeth Walsh for her generous help correcting the English.


  1. Andersen, R. A., 2005. Algal Culturing Techniques. Elsevier/Academic Press, Amsterdam.Google Scholar
  2. Arditi, R., N. Perrin & H. Saïah, 1991. Functional responses and heterogeneities: an experimental test with cladocerans. Oikos 60: 69–75.CrossRefGoogle Scholar
  3. Beklioglu, M. & E. Jeppesen, 1999. Behavioural response of plant-associated Eurycercus lamellatus (O.F. Müller) to different food sources and fish cues. Aquatic Ecology 33: 167–173.CrossRefGoogle Scholar
  4. Burks, R. L., E. Jeppesen & D. M. Lodge, 2000. Macrophyte and fish chemicals suppress Daphnia growth and alter life-history traits. Oikos 88: 139–148.CrossRefGoogle Scholar
  5. Burks, R. L., E. Jeppesen & D. M. Lodge, 2001. Littoral zone structures as Daphnia refugia against fish predators. Limnology and Oceanography 46: 230–237.CrossRefGoogle Scholar
  6. Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.CrossRefGoogle Scholar
  7. Campbell, J. M., W. J. Clark & R. Kosinskiz, 1982. A technique for examining microspatial distribution of Cladocera associated with shallow water macrophytes. Hydrobiologia 97: 225–232.CrossRefGoogle Scholar
  8. Cerbin, S., E. van Donk & R. D. Gulati, 2007. The influence of Myriophyllum verticillatum and artificial plants on some life history parameters of Daphnia magna. Aquatic Ecology 41: 263–271.CrossRefGoogle Scholar
  9. De Bie, T., S. Declerck, K. Martens, L. De Meester & L. Brendonck, 2008. A comparative analysis of cladoceran communities from different water body types: patterns in community composition and diversity. Hydrobiologia 597: 19–27.CrossRefGoogle Scholar
  10. Dodson, S. I., R. A. Lillie & S. Will-Wolf, 2005. Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes. Ecological Applications 15: 1191–1198.CrossRefGoogle Scholar
  11. Dodson, S. L., C. E. Cáceres & D. C. Rogers, 2010. Cladocera and other Branchiopoda. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Academic Press, San Diego: 773–827.CrossRefGoogle Scholar
  12. Fairchild, G. W., 1981. Movement and microdistribution of Sida crystallina and other littoral microcrustacea. Ecology 62: 1341–1352.CrossRefGoogle Scholar
  13. Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123.CrossRefGoogle Scholar
  14. Figueredo, C. C. & A. Giani, 2005. Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwater Biology 50: 1391–1403.CrossRefGoogle Scholar
  15. Fryer, G., 1968. Evolution and adaptive radiation in the Chydoridae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 254: 221–385.CrossRefGoogle Scholar
  16. Fryer, G., 1991. Functional morphology and the adaptive radiation of the Daphniidae (Branchiopoda: Anomopoda). Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 331: 1–99.CrossRefGoogle Scholar
  17. Gutierrez, M. F. & J. C. Paggi, 2014. Chemical repellency and adverse effects of free-floating macrophytes on the cladoceran Ceriodaphnia dubia under two temperature levels. Limnology 15: 37–45.CrossRefGoogle Scholar
  18. Hanazato, T., K. Fueki & M. Yoshimoto, 2001. Fish-induced life-history shifts in the cladocerans Daphnia and Simocephalus: are they positive or negative responses? Journal of Plankton Research 23: 945–951.CrossRefGoogle Scholar
  19. Hu, H. & Y. Hong, 2008. Algal-bloom control by allelopathy of aquatic macrophytes: a review. Frontiers of Environmental Science & Engineering in China 2: 421–438.CrossRefGoogle Scholar
  20. Jin, Z. H., Y. Y. Zhuang, S. G. Dai & T. L. Li, 2003. Isolation and identification of extracts of Eichhornia crassipes and their allelopathic effects on algae. Bulletin of Environmental Contamination and Toxicology 71: 1048–1052.CrossRefPubMedGoogle Scholar
  21. Krausman, P. R., 1999. Some basic principles of habitat use. In Launchbaugh, K. L., K. D. Saunders & J. C. Mosley (eds), Grazing Behaviour of Livestock and Wildlife. Idaho Forest, Wildlife, and Range Experiment Station Bulletin No. 70. University of Idaho, Moscow: 85–90.Google Scholar
  22. Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221–239.CrossRefGoogle Scholar
  23. Laugaste, R. & M. Reunanen, 2005. The composition and density of epiphyton on some macrophyte species in the partly meromictic Lake Verevi. Hydrobiologia 547: 137–150.CrossRefGoogle Scholar
  24. Lauridsen, T. L. & D. M. Lodge, 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnology and Oceanography 41: 794–798.CrossRefGoogle Scholar
  25. Lima, S. L. & T. D. Steury, 2005. Perception of predation risk: the foundation of non-lethal predator-prey interactions. In Barbosa, P. & I. Castellanos (eds), Ecology of Predator-Prey Interactions. Oxford University Press, Oxford: 166–188.Google Scholar
  26. Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.CrossRefGoogle Scholar
  27. Meerhoff, M., C. Fosalba, C. Bruzzone, N. Mazzeo, W. Noordoven & E. Jeppesen, 2006. An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biology 51: 1320–1330.CrossRefGoogle Scholar
  28. Meerhoff, M., C. Iglesias, F. T. de Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.CrossRefGoogle Scholar
  29. Monakor, A. B., 2003. Feeding of Freshwater Invertebrates. Kenobi Productions, Belgium.Google Scholar
  30. Moss, B., 1998. Ecology of Freshwaters: Man and Medium, Past to Future, 3rd ed. Blackwell Science, UK.Google Scholar
  31. Nurminen, L., J. Horppila & Z. Pekcan-Hekim, 2007. Effect of light and predator abundance on the habitat choice of plant-attached zooplankton. Freshwater Biology 52: 539–548.CrossRefGoogle Scholar
  32. Nurminen, L., Z. Pekcan-Hekim, S. Repka & J. Horppila, 2010. Effect of prey type and inorganic turbidity on littoral predator–prey interactions in a shallow lake: an experimental approach. Hydrobiologia 646: 209–214.CrossRefGoogle Scholar
  33. Ohtaka, A., T. Narita, T. Kamiya, H. Katakura, Y. Araki, S. Im, R. Chhay & S. Tsukawaki, 2011. Composition of aquatic invertebrates associated with macrophytes in Lake Tonle Sap, Cambodia. Limnology 12: 137–144.CrossRefGoogle Scholar
  34. Padial, A. A., S. M. Thomaz & A. A. Agostinho, 2009. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia 624: 161–170.CrossRefGoogle Scholar
  35. Paporello de Amsler, G., 1983. Fauna asociada a las raíces de Eichhornia crassipes en el Río Correntoso (Prov. de Santa Fe): estudio preliminar. Revista de la Asociación de Ciencias Naturales del Litoral 14: 133–147.Google Scholar
  36. Paterson, M., 1993. The distribution of microcrustacea in the littoral zone of a freshwater lake. Hydrobiologia 263: 173–183.CrossRefGoogle Scholar
  37. Penak, R. W., 1973. Some evidence for aquatic macrophytes as repellents for a limnetic species of Daphnia. International Review of Hydrobiology 58: 569–576.CrossRefGoogle Scholar
  38. Pijanowska, J. & A. Kowalczewski, 1997. Predators can induce swarming behavior and locomotory responses in Daphnia. Freshwater Biology 37: 649–656.CrossRefGoogle Scholar
  39. Reigosa, M. J., A. Sánchez-Moreiras & L. González, 1999. Ecophysiological approach in allelopathy. Critical Reviews in Plant Sciences 18: 577–608.CrossRefGoogle Scholar
  40. Shanab, S. M. M., E. A. Shalaby, D. A. Lightfoot & H. A. El-Shemy, 2010. Allelopathic effects of water hyacinth (Eichhornia crassipes). PLoS One 5: e13200.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Teixeira-De Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.CrossRefGoogle Scholar
  42. Toft, J. D., C. A. Simenstad, J. R. Cordell & L. F. Grimaldo, 2003. The effects of introduced water hyacinth on habitat structure, invertebrate assemblages, and fish diets. Estuaries 26: 746–758.CrossRefGoogle Scholar
  43. Underwood, A. J., M. G. Chapman & T. P. Crowe, 2004. Identifying and understanding ecological preferences for habitat or prey. Journal of Experimental Marine Biology and Ecology 300: 161–187.CrossRefGoogle Scholar
  44. Vanderstukken, M., S. A. J. Declerck, A. Pals, L. De Meester & K. Muylaert, 2010. The influence of plant-associated filter feeders on phytoplankton biomass: a mesocosm study. Hydrobiologia 646: 199–208.CrossRefGoogle Scholar
  45. Vijverberg, J. & A. F. Richter, 1982. Population dynamics and production of Daphnia hyaline Leydig and Daphnia cucullata Sars in Tjeukemeer. Hydrobiologia 95: 235–259.CrossRefGoogle Scholar
  46. Villamagna, A. M. & B. R. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.CrossRefGoogle Scholar
  47. Walsh, E. J., M. Salazar, J. Remirez, O. Moldes & R. L. Wallace, 2006. Predation by invertebrate predators on the colonial rotifer Sinantherina socialis. Invertebrate Biology 125: 325–335.CrossRefGoogle Scholar
  48. Weber, C. I., 1993. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. United States Environmental Protection Agency, Cincinnati. EPA/600/4-90/027F.Google Scholar
  49. Wicklum, D., 1999. Variation in horizontal zooplankton abundance in mountain lakes: shore avoidance or fish predation? Journal of Plankton Research 21: 1957–1975.CrossRefGoogle Scholar
  50. Zambrano, L., V. Contreras, M. Mazari-Hiriart & A. E. Zarco-Arista, 2009. Spatial heterogeneity of water quality in a highly degraded tropical freshwater ecosystem. Environmental Management 4: 249–263.CrossRefGoogle Scholar
  51. Zambrano, L., E. Valiente & M. J. Vander Zanden, 2010. Food web overlap among native axolotl (Ambystoma mexicanum) and two exotic fishes: carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) in Xochimilco, Mexico City. Biological Invasions 12: 3061–3069.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Aideé Montiel-Martínez
    • 1
    • 2
  • Jorge Ciros-Pérez
    • 2
  • Gabriel Corkidi
    • 3
  1. 1.Posgrado en Ciencias Biológicas, FES IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla, Edo. de MéxicoMexico
  2. 2.Proyecto de Investigación en Limnología Tropical, UIICSE, FES IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla, Edo. de MéxicoMexico
  3. 3.Laboratorio de Análisis de Imágenes y Visión por Computadora, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations