, Volume 753, Issue 1, pp 189–204 | Cite as

Health and reproduction of red mullet, Mullus barbatus, in the western Mediterranean Sea

  • Dolors Ferrer-Maza
  • Marta Muñoz
  • Josep Lloret
  • Elisabeth Faliex
  • Sílvia Vila
  • Pierre Sasal
Primary Research Paper


The reproductive and general health of exploited fish stocks is an essential element of sustainable and profitable fisheries. The main purpose of this study was to assess the relationships between reproduction and two important parameters of fish health (parasitism and energy reserves) in female specimens of red mullet, Mullus barbatus, from the western Mediterranean Sea. We present new data for this species on (i) the prevalence and intensity of infection by metazoan parasites; (ii) the total lipid content in muscle and gonads as a measure of condition and (iii) fecundity and egg quality as a measure of their reproductive capacity. The results show that M. barbatus is a batch spawner with an income breeding strategy, an asynchronous development of oocytes and indeterminate fecundity. The results also indicate that the three most abundant and prevalent parasites significantly affect the condition and reproduction of M. barbatus. Specifically, the digenean, Opecoeloides furcatus, causes a reduction in the female’s energy reserves, while the nematodes, Hysterothylacium fabri and H. aduncum, produce a rise in egg production but impair egg quality. These implications of the relationships between parasitism, fish health and fish reproduction should be taken into consideration in the assessment and management of exploited species.


Egg quality Energy reserves Fecundity Metazoan parasites Reproductive strategy 



We are grateful to our colleagues at the University of Girona (Animal Biology-Ichthyology Research Group) for their collaboration in the laboratory work and, especially, to A. El Aoussimi for his helpful assistance during on-board fish sampling. Thanks are also given to the crew of the R/V Cornide de Saavedra (IEO, Spain) for technical and scientific support during the MEDITS GSA-06 trawl surveys. We also wish to extend our gratitude to R. A. Bray (NHM, London) for his kind help with the digenean identification and the Guest Editor and the anonymous referees for their helpful comments and suggestions on earlier drafts of the manuscript. This study was carried out within the framework of a research project (ref. CTM2009-08602) funded by the Spanish Ministry of Science and Innovation, whereby D. Ferrer-Maza benefited from a FPI predoctoral fellowship (ref. BES-2010-032618). J. Lloret benefited from a “Ramón y Cajal” research contract from the Spanish Ministry of Economy and Competitiveness.


  1. Adams, S. M., 1999. Ecological role of lipids in the health and success of fish populations. In Arts, M. T. & B. C. Wainnmann (eds), Lipids in Freshwater Ecosystems. Springer, New York: 132–153.CrossRefGoogle Scholar
  2. Alonso-Fernández, A., A. C. Vallejo, F. Saborido-Rey, H. Murua & E. A. Trippel, 2009. Fecundity estimation of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) of Georges Bank: application of the autodiametric method. Fisheries Research 99: 47–54.CrossRefGoogle Scholar
  3. Anastasopoulou, A. & F. Saborido-Rey, 2011. Reproductive ecology of Mullus barbatus in eastern Mediterranean Sea. In Book of Abstracts of the Fish Reproduction and Fisheries (FRESH) Final Conference, 16–20 May 2011, Vigo. http://freshcost.quadralia.net/fresh-final-conference/.
  4. Aydın, M. & U. Karadurmuş, 2013. An investigation on age, growth and biological characteristics of red mullet (Mullus barbatus ponticus, Essipov, 1927) in the Eastern Black Sea. Iranian Journal of Fisheries Sciences 12: 277–288.Google Scholar
  5. Bagamian, K. H., D. C. Heins & J. A. Baker, 2004. Body condition and reproductive capacity of three-spined stickleback infected with the cestode Schistocephalus solidus. Journal of Fish Biology 64: 1568–1576.CrossRefGoogle Scholar
  6. Barret, J. A., 1986. Host-parasite interactions and systematics. In Stone, A. R. & D. L. Hawksworth (eds), Coevolution and Systematics. Oxford University Press Inc., Oxford: 1–17.Google Scholar
  7. Bean, M. G. & T. H. Bonner, 2009. Impact of Bothriocephalus acheilognathi (Cestoda: Pseudophyllidea) on Cyprinella lutrensis condition and reproduction. Journal of Freshwater Ecology 24: 383–391.CrossRefGoogle Scholar
  8. Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57: 289–300.Google Scholar
  9. Birkeland, C. & P. K. Dayton, 2005. The importance in fishery management of leaving the big ones. Trends in Ecology and Evolution 20: 356–358.CrossRefPubMedGoogle Scholar
  10. Bizsel, K. C., 1987. Seasonal variations in the diel diet of the red mullets (Mullus barbatus L.) in the northern Sicilian Basin. Middle East Technical University, 87 pp.Google Scholar
  11. Bray, R. A., D. I. Gibson & A. Jones, 2008. Keys to the Trematoda, Vol. 3. CAB International, Wallingford, 848 pp.Google Scholar
  12. Brown-Peterson, N. J., D. M. Wyanski, F. Saborido-Rey, B. J. Macewicz & S. K. Lowerre-Barbieri, 2011. A standardized terminology for describing reproductive development in fishes. Marine and Coastal Fisheries 3: 52–70.CrossRefGoogle Scholar
  13. Bush, A. O., K. D. Lafferty, J. M. Lotz & A. W. Shostak, 1997. Parasitology meets ecology on its own terms: Margolis et al. Revisited. Journal of Parasitology 83: 575–583.CrossRefPubMedGoogle Scholar
  14. Carreras-Aubets, M., F. E. Montero, F. Padrós, S. Crespo & M. Carrassón, 2011. Parasites and hystopathology of Mullus barbatus and Citharus linguatula (Pisces) from two sites in the NW Mediterranean with different degrees of pollution. Scientia Marina 75: 369–378.Google Scholar
  15. Carreras-Aubets, M., F. E. Montero, A. Kostadinova & M. Carrassón, 2012. Parasite communities in the red mullet, Mullus barbatus L., respond to small-scale variation in the levels of polychlorinated biphenyls in the Western Mediterranean. Marine Pollution Bulletin 64: 1853–1860.CrossRefPubMedGoogle Scholar
  16. Chérif, M., M. M. Ben Amor, S. Selmi, H. Gharbi, H. Missaoui & C. Capapé, 2011. Food and feeding habits of the red mullet, Mullus barbatus (Actinopterygii: Perciformes: Mullidae), off the northern Tunisian coast (central Mediterranean). Acta Ichthyologica Et Piscatoria 41: 109–116.CrossRefGoogle Scholar
  17. Desbrosses, P., 1935. Contribution a la connaissance de la biologie du rouget-barbet en Atlantique nord. Revue des Travaux de l’Institut des Pêches Maritimes IV 3: 249–270.Google Scholar
  18. Domínguez-Petit, R., F. Saborido-Rey & I. Medina, 2010. Changes of proximate composition, energy storage and condition of European hake (Merluccius merluccius, L. 1758) through the spawning season. Fisheries Research 104: 73–82.CrossRefGoogle Scholar
  19. Durieux, E. D. H., R. Galois, M.-L. Bégout, P. Sasal & F. Lagardère, 2007. Temporal changes in lipid condition and parasitic infection by digenean metacercariae of young-of-year common sole Solea solea (L.) in an Atlantic nursery ground (Bay of Biscay, France). Journal of Sea Research 57: 162–170.CrossRefGoogle Scholar
  20. Esposito, V., F. Andaloro, D. Bianca, A. Natalotto, T. Romeo, G. Scotti & L. Castriota, 2014. Diet and prey selectivity of the red mullet, Mullus barbatus (Pisces: Mullidae), from the southern Tyrrhenian Sea: the role of the surf zone as a feeding ground. Marine Biology Research 10: 167–178.CrossRefGoogle Scholar
  21. FAO/General Fisheries Commission for the Mediterranean, 2012. Report of the Fourteenth Session of the Scientific Advisory Committee, Sofia 20–24 Feb 2012. FAO Fisheries and Aquaculture Report No. 1001. FAO, Rome, 200 pp. http://www.fao.org/docrep/015/i2702b/i2702b.pdf.
  22. Ferrer-Maza, D., J. Lloret, M. Muñoz, E. Faliex, S. Vila & P. Sasal, 2014. Parasitism, condition and reproduction of the European hake (Merluccius merluccius) in the northwestern Mediterranean Sea. ICES Journal of Marine Science 71: 1088–1099.CrossRefGoogle Scholar
  23. Fischer, W., M. Schneider & M. L. Bauchot, 1987. Fiches FAO d’identification des espèces pour les besoins de la peche. Mediterranée et Mer Noire. Zone de peche 37. Volume II: Vertébrés. Fiches FAO d’identification des espèces pour les besoins de la peche. FAO, Rome, 769 pp.Google Scholar
  24. Fogelman, R. M., A. M. Kuris & A. S. Grutter, 2009. Parasitic castration of a vertebrate: Effect of the cymothoid isopod, Anilocra apogonae, on the five-lined cardinalfish, Cheilodipterus quinquelineatus. International Journal for Parasitology 39: 577–583.CrossRefPubMedGoogle Scholar
  25. Francová, K. & M. Ondračková, 2013. Overwinter body condition, mortality and parasite infection in two size classes of 0+ year juvenile European bitterling Rhodeus amarus. Journal of Fish Biology 82: 555–568.CrossRefPubMedGoogle Scholar
  26. Ganias, K., 2013. Determining the indeterminate: evolving concepts and methods on the assessment of the fecundity pattern of fishes. Fisheries Research 138: 23–30.CrossRefGoogle Scholar
  27. Gibson, D. I., A. Jones & R. A. Bray, 2002. Keys to the Trematoda, Vol. 1. CAB International, Wallingford, 544 pp.Google Scholar
  28. Guidelli, G., W. L. G. Tavechio, R. M. Takemoto & G. C. Pavanelli, 2011. Relative condition factor and parasitism in anostomid fishes from the floodplain of the Upper Paraná River, Brazil. Veterinary Parasitology 177: 145–151.CrossRefPubMedGoogle Scholar
  29. Houston, A. I., P. A. Stephens, I. L. Boyd, K. C. Harding & J. M. McNamara, 2006. Capital or income breeding? A theoretical model of female reproductive strategies. Behavioral Ecology 18: 241–250.CrossRefGoogle Scholar
  30. Jones, A., R. A. Bray & D. I. Gibson, 2005. Keys to the Trematoda, Vol. 2. CAB International, Wallingford, 768 pp.Google Scholar
  31. Khan, R. A. & D. Lacey, 1986. Effect of concurrent infections of Lernaeocera Branchialis (Copepoda) and Trypanosoma murmanensis (Protozoa) on Atlantic cod, Gadus morhua. Journal of Wildlife Diseases 22: 201–208.CrossRefPubMedGoogle Scholar
  32. Kokokiris, L., A. Stamoulis, N. Monokrousos & S. Doulgeraki, 2014. Oocytes development, maturity classification, maturity size and spawning season of the red mullet (Mullus barbatus barbatus Linnaeus, 1758). Journal of Applied Ichthyology 30: 20–27.CrossRefGoogle Scholar
  33. Lloret, J., M. Demestre & J. Sánchez-Pardo, 2007. Lipid reserves of red mullet (Mullus barbatus) during pre-spawning in the northwestern Mediterranean. Scientia Marina 71: 269–277.CrossRefGoogle Scholar
  34. Lloret, J., E. Faliex, G. E. Shulman, J. A. Raga, P. Sasal, M. Muñoz, M. Casadevall, A. E. Ahuir-Baraja, F. E. Montero, A. Repullés-Albelda, M. Cardinale, H. J. Rätz, S. Vila & D. Ferrer-Maza, 2012a. Fish health and fisheries, implications for stock assessment and management: the mediterranean example. Reviews in Fisheries Science 20: 165–180.CrossRefGoogle Scholar
  35. Lloret, J., R. Galzin, L. Gil de Sola, A. Souplet & M. Demestre, 2005. Habitat related differences in lipid reserves of some exploited fish species in the north-western Mediterranean continental shelf. Journal of Fish Biology 67: 51–65.CrossRefGoogle Scholar
  36. Lloret, J., M. Muñoz & M. Casadevall, 2012b. Threats posed by artisanal fisheries to the reproduction of coastal fish species in a Mediterranean marine protected area. Estuarine, Coastal and Shelf Science 113: 133–140.CrossRefGoogle Scholar
  37. Lloret, J., G. Shulman & R. M. Love, 2014. Condition and Health Indicators of Exploited Marine Fishes. Wiley Blackwell, Oxford, 262 pp.Google Scholar
  38. Lowerre-Barbieri, S. K. & L. R. Barbieri, 1993. A new method of oocyte separation and preservation for fish reproduction studies. Fishery Bulletin 91: 165–170.Google Scholar
  39. Lowerre-Barbieri, S. K., N. J. Brown-Peterson, H. Murua, J. Tomkiewicz, D. M. Wyanski & F. Saborido-Rey, 2011. Emerging issues and methodological advances in fisheries reproductive biology. Marine and Coastal Fisheries 3: 32–51.CrossRefGoogle Scholar
  40. Martínez-Vicaria, A., J. Martín-Sánchez, P. Illescas, A. M. Lara, M. Jiménez-Albarrán & A. Valero, 2000. The occurrence of two opecoeliid digeneans in Mullus barbatus and M. surmuletus from the Spanish south-eastern Mediterranean. Journal of Helminthology 74: 161–164.PubMedGoogle Scholar
  41. McBride, R. S., S. Somarakis, G. R. Fitzhugh, A. Albert, N. A. Yaragina, M. J. Wuenschel, A. Alonso-Fernández & G. Basilone, 2013. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish and Fisheries. doi: 10.1111/faf.12043.Google Scholar
  42. Muñoz, M., C. Dimitriadis, M. Casadevall, S. Vila, E. Delgado, J. Lloret & F. Saborido-Rey, 2010. Female reproductive biology of the bluemouth Helicolenus dactylopterus dactylopterus: spawning and fecundity. Journal of Fish Biology 77: 2423–2442.CrossRefPubMedGoogle Scholar
  43. Murua, H. & L. Motos, 2006. Reproductive strategy and spawning activity of the European hake Merluccius merluccius (L.) in the Bay of Biscay. Journal of Fish Biology 69: 1288–1303.CrossRefGoogle Scholar
  44. Murua, H. & F. Saborido-Rey, 2003. Female reproductive strategies of marine fish species of the North Atlantic. Journal of Northwest Atlantic Fishery Science 33: 23–31.CrossRefGoogle Scholar
  45. Murua, H., G. Kraus, F. Saborido-Rey, P. R. Witthames, A. Thorsen & S. Junquera, 2003. Procedures to estimate fecundity of marine fish species in relation to their reproductive strategy. Journal of Northwest Atlantic Fishery Science 33: 33–54.CrossRefGoogle Scholar
  46. Naidenova, N. N. & V. M. Nikolaeva, 1968. Nematode fauna of some benthic fish of the Mediterranean Basin. Biologiya Morya 14: 63–82.Google Scholar
  47. Ondracková, M., K. Francová, M. Dávidová, M. Polacik & P. Jurajda, 2010. Condition status and parasite infection of Neogobius kessleri and N. melanostomus (Gobiidae) in their native and non-native area of distribution of the Danube River. Ecological Research 25: 857–866.CrossRefGoogle Scholar
  48. Petter, A. J., C. Lèbre & B. M. Radujkovic, 1984. Nematode parasites of osteichthyen fish of the southern Adriatic. Acta Adriatica 25: 205–221.Google Scholar
  49. Petter, A. J. & C. Maillard, 1987. Ascarids of fishes from Western Mediterranean sea. Bulletin du Muséum National d’Histoire Naturelle. Section A, Zoologie, Biologie et Écologie Animales 9: 773–798.Google Scholar
  50. Petter, A. J. & C. Maillard, 1988. Larval Ascarids parasites of fishes from western Mediterranean sea. Bulletin du Muséum National d’Histoire Naturelle. Section A, Zoologie, Biologie et Écologie Animales Muséum national d’histoire naturelle 10: 347–369.Google Scholar
  51. Ramdane, Z., J. P. Trilles, K. Mahé & R. Amara, 2013. Metazoan ectoparasites of two teleost fish, Boops boops (L.) and Mullus barbatus barbatus L. from Algerian coast: diversity, parasitological index and impact of parasitism. Cybium 37: 59–66.Google Scholar
  52. Reiczigel, J. & L. Rózsa, 2005. Quantitative Parasitology 3.0. Budapest. Distributed by the authors. Available at http://www.zoologia.hu/qp/qp.html.
  53. Rijnsdorp, A. D. & P. R. Witthames, 2005. Ecology of reproduction. In Gibson, R. N. (ed.), Flatfishes: Biology and Exploitation. Fish and Aquatic Resources Series 9. Blackwell Science, Oxford: 68–93.CrossRefGoogle Scholar
  54. Roncarati, A., G. Brambilla, A. Meluzzi, A. L. Iamiceli, R. Fanelli, I. Moret, A. Ubaldi, R. Miniero, F. Sirri, P. Melotti & A. di Domenico, 2012. Fatty acid profile and proximate composition of fillets from Engraulis encrasicholus, Mullus barbatus, Merluccius merluccius and Sarda sarda caught in Tyrrhenian, Adriatic and Ionian seas. Journal of Applied Ichthyology 28: 545–552.CrossRefGoogle Scholar
  55. Rózsa, L., J. Reiczigel & G. Majoros, 2000. Quantifying parasites in samples of hosts. Journal of Parasitology 86: 228–232.CrossRefPubMedGoogle Scholar
  56. Saborido-Rey, F., O. S. Kjesbu & A. Thorsen, 2003. Buoyancy of Atlantic cod larvae in relation to developmental stage and maternal influences. Journal of Plankton Research 25: 291–307.CrossRefGoogle Scholar
  57. Saborido-Rey, F., H. Murua, J. Tomkiewicz & S. Lowerre-Barbieri, 2010. Female reproductive strategies: an energetic balance between maturation, growth and egg production. In Wyanski, D. M. & N. J. Brown-Peterson (eds), Proceedings of the 4th Workshop on Gonadal Histology of Fishes, 16–19 June 2009, El Puerto de Santa María: 15–18. http://hdl.handle.net/10261/24937.
  58. Sajiki, J., K. Takahashi, Y. Hayashi, Y. Ando, M. Kaneda & T. Hamazaki, 1992. Fatty acid composition in anchovy (Engraulis japonicus) infected with Anisakis simplex. Japanese Journal of Toxicology and Environmental Health 38: 361–365.CrossRefGoogle Scholar
  59. Sasal, P., E. Faliex, I. De Buron & S. Morand, 2001. Sex discriminatory effect of the acanthocephalan Acanthocephaloides propinquus on a gobid fish Gobius bucchichii. Parasite 8: 231–236.CrossRefPubMedGoogle Scholar
  60. Shahidi, F., 2001. Extraction and measurement of total lipids. In Wrolstad, R. E. (ed.), Current Protocols in Food Analytical Chemistry. Wiley, New York: 1–11.Google Scholar
  61. Shchepkina, A. M., 1980. Lipid composition of the tissues of Engraulis encrasicholus during its annual cycle and in infection with larvae of the nematode Contracaecum aduncum. Ekologiya Morya 3: 33–39.Google Scholar
  62. Tirasin, E. M., A. Unluoglu & B. Cihangir, 2007. Fecundity of red mullet (Mullus barbatus L., 1758) along the Turkish coasts of the Mediterranean sea. Rapport Commission International pour l’Exploration Scientifique de la Mer Méditerranée 38: 614.Google Scholar
  63. Tserpes, G., F. Fiorentino, D. Levi, A. Cau, M. Murenu, A. Zamboni & C. Papaconstantinou, 2002. Distribution of Mullus barbatus and M. surmuletus (Osteichthyes: Perciformes) in the Mediterranean continental shelf: implications for management. Scientia Marina 66: 39–54.CrossRefGoogle Scholar
  64. Tsikliras, A. C., E. Antonopoulou & K. I. Stergiou, 2010. Spawning period of Mediterranean marine fishes. Reviews in Fish Biology and Fisheries 20: 499–538.CrossRefGoogle Scholar
  65. Vassilopoulou, V. & C. Papaconstantinou, 1993. Feeding habits of red mullet (Mullus barbatus) in a gulf in western Greece. Fisheries Research 16: 69–83.CrossRefGoogle Scholar
  66. Verhoeven, K. J. F., K. L. Simonsen & L. M. McIntyre, 2005. Implementing false discovery rate control: increasing your power. Oikos 108: 643–647.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dolors Ferrer-Maza
    • 1
  • Marta Muñoz
    • 1
  • Josep Lloret
    • 1
  • Elisabeth Faliex
    • 2
  • Sílvia Vila
    • 1
  • Pierre Sasal
    • 3
  1. 1.Department of Environmental SciencesUniversity of GironaGironaSpain
  2. 2.UMR 5110, Centre de Formation et de Recherche sur les Environnements MéditerranéensUniversity of Perpignan Via DomitiaPerpignanFrance
  3. 3.Laboratoire d’Excellence Corail, CRIOBE, USR 3278 - CNRS - EPHECBETM - Université de PerpignanPapetoaiFrench Polynesia

Personalised recommendations