, Volume 753, Issue 1, pp 149–162 | Cite as

Tidal and diel variations in abundance and schooling behavior of estuarine fish within an intertidal salt marsh pool

  • Guillaume RieucauEmail author
  • Kevin M. Boswell
  • Matthew E. Kimball
  • Gabriel Diaz
  • Dennis M. Allen
Primary Research Paper


Tidally driven fluctuations lead to rapid variations in hydrological properties that can have profound effects on the dynamic and functions of salt marshes. During low tides, many nektonic species find refuge from predatory fish in shallow intertidal pools. The utilization of shallow pool refuges also exposes fishes to fitness costs that fluctuate between day and night. Yet, how aggregated fish using an intertidal pool modulate their schooling behavior over the diel cycle remains unknown. Using high-resolution imaging sonar (ARIS), we monitored an intertidal pool over a 3-day period and quantified fish abundance, size, and schooling behavior relative to the diel and tidal cycles. Higher fish abundance was found during low tides than high tides when the section was connected with the subtidal waters. At low tide, no differences in fish abundance and size were detected in the pool between day and night, but larger schools formed at night than day. Our results suggest that biotic and abiotic factors affecting fish schooling behavior in the low tide refuge may vary over the diel cycle. We present possible functional explanations for the shifts in schooling tendency between nocturnal and diurnal utilization of the pool.


Schooling behavior Nekton Salt marsh Diel cycle Tidal cycle Intertidal creek ARIS 



This research was conducted in accordance with the guidelines set forth in USC IACUC Animal Use Protocol # 2154-100810-040814. This Project was funded by the Baruch Marine Field Laboratory Visiting Scientist Award from the University of South Carolina to KMB. Financial support for GR was provided by a postdoctoral fellowship from the Institute of Marine Research (CollPen project) and by the Norwegian Research Council (grant 204229/F20). We thank Julien Martin for his statistical advice.

Supplementary material

Supplementary material 1 (WMV 29353 kb)


  1. Abrahams, M. V. & M. G. Kattenfeld, 1997. The role of turbidity as a constraint on predator-prey interactions in aquatic environments. Behavioral Ecology and Sociobiology 40: 169–174.CrossRefGoogle Scholar
  2. Allen, D., S. K. Service & M. V. Ogburn, 1992. Factors influencing the collection efficiency of estuarine fishes. Transactions of the American Fisheries Society 121: 234–244.CrossRefGoogle Scholar
  3. Allen, D. M., S. S. Haertel-Borer, B. J. Milan, D. Bushek & R. F. Dame, 2007. Geomorphological determinants of nekto use of intertidal salt marsh creeks. Marine Ecology Progress Series 329: 57–71.CrossRefGoogle Scholar
  4. Allen, D. M., S. A. Luthy, J. A. Garwood, R. F. Young & R. F. Dame, 2013. Nutrient subsidies from nekton in salt marsh intertidal creeks. Limnology and Oceanography 58: 1048–1060.CrossRefGoogle Scholar
  5. Becker, A., P. D. Cowley, A. K. Whitfield, J. Järnegren & T. F. Næsje, 2011. Diel fish movements in the littoral zone of a temporarily closed South African estuary. Journal of Experimental Marine Biology and Ecology 406: 63–70.CrossRefGoogle Scholar
  6. Becker, A. & I. M. Suthers, 2014. Predator driven diel variation in abundance and behaviour of fish in deep and shallow habitats of an estuary. Estuarine, Coastal and Shelf Science 144: 82–88.CrossRefGoogle Scholar
  7. Becker, A., A. K. Whitfield, P. D. Cowley, J. Järnegren & T. F. Næsje, 2013. Potential effects of artificial light associated with anthropogenic infrastructure on the abundance and foraging behaviour of estuary-associated fishes. Journal of Applied Ecology 50: 43–50.CrossRefGoogle Scholar
  8. Benfield, M. & T. Minello, 1996. Relative effects of turbidity and light intensity on reactive distance and feeding of an estuarine fish. Environmental Biology of Fishes 46: 211–216.CrossRefGoogle Scholar
  9. Bildstein, K. L., B. Christy & P. Decoursey, 1981. Behavior and behavioral ecology abstracts from Southeastern Coastal and Estuarine Birds: a conference workshop, Georgetown, South Carolina USA. Bird Behavior 4: 50–53.Google Scholar
  10. Blaxter, J. H. S. & R. S. Batty, 1987. Comparisons of herring behaviour in the light and dark: changes in activity and responses to sound. Journal of the Marine Biological Association of the United Kingdom 67: 849–859.CrossRefGoogle Scholar
  11. Boesch, D. & R. E. Turner, 1984. Dependence of fishery species on salt marshes: the role of food and refuge. Estuaries 7: 460–468.CrossRefGoogle Scholar
  12. Boswell, K., M. Wilson & C. Wilson, 2007. Hydroacoustics as a tool for assessing fish biomass and size distribution associated with discrete shallow water estuarine habitats in Louisiana. Estuaries and Coasts 30: 607–617.CrossRefGoogle Scholar
  13. Boswell, K. M., M. P. Wilson & J. H. Cowan, 2008. A semi-automated approach to estimating fish size, abundance and behavior from dual-frequency identification sonar (DIDSON) data. North American Journal of Fisheries Management 28: 799–807.CrossRefGoogle Scholar
  14. Bretsch, K. & D. Allen, 2006a. Tidal migrations of nekton in salt marsh intertidal creeks. Estuaries and Coasts 29: 474–486.CrossRefGoogle Scholar
  15. Bretsch, K. & D. M. Allen, 2006b. Effects of biotic factors on depth selection by salt marsh nekton. Journal of Experimental Marine Biology and Ecology 334: 130–138.CrossRefGoogle Scholar
  16. Brierley, A. S. & M. J. Cox, 2010. Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Current Biology 20: 1758–1762.CrossRefPubMedGoogle Scholar
  17. Buzzelli, C., O. Akman, T. Buck, E. Koepfler, J. Morris & A. Lewitus, 2004. Relationships among water-quality parameters from the North Inlet–Winyah Bay National Estuarine Research Reserve, South Carolina. Journal of Coastal Research:59–74. doi: 10.2112/SI45-059.1.
  18. Cappo, M., G. De’ath & P. Speare, 2007. Inter-reef vertebrate communities of the Great Barrier Reef Marine Park determined by baited remote underwater video stations. Marine Ecology Progress Series 350: 209–221.CrossRefGoogle Scholar
  19. Cappo, M., P. Speare & G. De’ath, 2004. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. Journal of Experimental Marine Biology and Ecology 302: 123–152.CrossRefGoogle Scholar
  20. Catrijsse, A., E. S. Makwaia, H. R. Dankwa, O. Hamerlynck & M. A. Hemminga, 1994. Nekton communities of an intertidal creek of a European estuarine brackish marsh. Marine Ecology Progress Series 109: 195–208.CrossRefGoogle Scholar
  21. Chicoli, A., S. Butail, Y. Lun, J. Bak-Coleman, S. Coombs & D. A. Paley, 2014. The effects of flow on schooling Devario aequipinnatus: school structure, startle response and information transmission. Journal of Fish Biology 84: 1401–1421.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Clark, K. L., G. M. Ruiz & A. H. Hines, 2003. Diel variation in predator abundance, predation risk and prey distribution in shallow-water estuarine habitats. Journal of Experimental Marine Biology and Ecology 287: 37–55.CrossRefGoogle Scholar
  23. Clark, M. E., T. G. Wolcott, D. L. Wolcott & A. H. Hines, 1999. Foraging and agonistic activity co-occur in free-ranging blue crabs (Callinectes sapidus): observation of animals by ultrasonic telemetry. Journal of Experimental Marine Biology and Ecology 233: 143–160.CrossRefGoogle Scholar
  24. Craig, J. K. & L. Crowder, 2000. Factors influencing habitat selection in fishes with a review of marsh ecosystems. In Weinstein, M. & D. Kreeger (eds), Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht: 241–266.Google Scholar
  25. Dommasnes, A., F. Rey & I. Røttingen, 1994. Reduced oxygen concentrations in herring wintering areas. ICES Journal of Marine Science: Journal du Conseil 51: 63–69.CrossRefGoogle Scholar
  26. Dame, R., D. Bushek, D. M. Allen, D. Edwards, L. Gregory, A. Lewitus, S. Crawford, E. Koepfler, C. Corbett, B. Kjerfve & T. Prins, 2000. The experimental analysis of tidal creeks dominated by oyster reefs: The pre-manipulation year. Journal of Shellfish Research 19: 361–369.Google Scholar
  27. Domenici, P., C. Lefrançois & A. Shingles, 2007. Hypoxia and the antipredator behaviours of fishes. Philosophical Transactions of the Royal Society B 362: 2105–2121.CrossRefGoogle Scholar
  28. Domenici, P., R. Silvana Ferrari, J. F. Steffensen & R. S. Batty, 2002. The effect of progressive hypoxia on school structure and dynamics in Atlantic herring Clupea harengus. Proceedings of the Royal Society B: Biological Sciences 269: 2103–2111.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Domenici, P., J. F. Steffensen & R. S. Batty, 2000. The effect of progressive hypoxia on swimming activity and schooling in Atlantic herring. Journal of Fish Biology 57: 1526–1538.CrossRefGoogle Scholar
  30. Fréon, P., F. Gerlotto & M. Soria, 1992. Changes in school structure according to external stimuli: description and influence on acoustic assessment. Fisheries Research 15: 45–66.CrossRefGoogle Scholar
  31. Fréon, P., F. Gerlotto & M. Soria, 1996. Diel variability of school structure with special reference to transition periods. ICES Journal of Marine Science: Journal du Conseil 53: 459–464.CrossRefGoogle Scholar
  32. Gibson, R. N., 2003. Go with the flow: tidal migration in marine animals. In Jones, M. B., A. Ingólfsson, E. Ólafsson, G. V. Helgason, K. Gunnarsson & J. Svavarsson (eds), Migrations and Dispersal of Marine Organisms. Developments in Hydrobiology, Vol. 174. Springer, Dordrecht: 153–161.CrossRefGoogle Scholar
  33. Godin, J.-G. J. & C. D. Sproul, 1988. Risk taking in parasitized sticklebacks under threat of predation: effects of energetic need and food availability. Canadian Journal of Zoology 66: 2360–2367.CrossRefGoogle Scholar
  34. Hagan, S. & K. Able, 2008. Diel variation in the pelagic fish assemblage in a temperate estuary. Estuaries and Coasts 31: 33–42.CrossRefGoogle Scholar
  35. Halpin, P. M., 2000. Habitat use by an intertidal salt-marsh fish: trade-offs between predation and growth. Marine Ecology Progress Series 198: 203–214.CrossRefGoogle Scholar
  36. Handegard, N. O., K. M. Boswell, C. C. Ioannou, S. P. Leblanc, D. B. Tjøstheim & I. D. Couzin, 2012. The dynamics of coordinated group hunting and collective information transfer among schooling prey. Current Biology 22: 1213–1217.CrossRefPubMedGoogle Scholar
  37. Hensor, E. M. A., J. G. J. Godin, D. J. Hoare & J. Krause, 2003. Effects of nutritional state on the shoaling tendency of banded killifish, Fundulus diaphanus, in the field. Animal Behaviour 65: 663–669.CrossRefGoogle Scholar
  38. Hettler, W. F., 1989. Nekton use of regularly-flooded saltmarsh cordgrass habitat in North Carolina, USA. Marine Ecology Progress Series 56: 111–118.CrossRefGoogle Scholar
  39. Hoare, D. J., J. Krause, N. Peuhkuri & J. G. J. Godin, 2000. Body size and shoaling in fish. Journal of Fish Biology 57: 1351–1366.CrossRefGoogle Scholar
  40. Ioannou, C. C., C. R. Tosh, L. Neville & J. Krause, 2008. The confusion effect – from neural networks to reduced predation risk. Behavioral Ecology 19: 126–130.CrossRefGoogle Scholar
  41. Katz, Y., K. Tunstrøm, C. C. Ioannou, C. Huepe & I. D. Couzin, 2011. Inferring the structure and dynamics of interactions in schooling fish. Proceedings of the National Academy of Sciences 108: 18720–18725.CrossRefGoogle Scholar
  42. Kimball, M. E. & K. W. Able, 2007a. Nekton utilization of intertidal salt marsh creeks: tidal influences in natural Spartina, invasive Phragmites, and marshes treated for Phragmites removal. Journal of Experimental Marine Biology and Ecology 346: 87–101.CrossRefGoogle Scholar
  43. Kimball, M. E. & K. W. Able, 2007b. Tidal utilization of nekton in Delaware Bay restored and reference intertidal salt marsh creeks. Estuaries and Coasts 30: 1075–1087.CrossRefGoogle Scholar
  44. Kimball, M. E. & K. W. Able, 2012. Tidal migrations of intertidal salt marsh creek nekton examined with underwater video. Northeastern Naturalist 19: 475–486.CrossRefGoogle Scholar
  45. Kimball, M. E., L. P. Rozas, K. M. Boswell & J. H. Cowan, 2010. Evaluating the effect of slot size and environmental variables on the passage of estuarine nekton through a water control structure. Journal of Experimental Marine Biology and Ecology 395: 181–190.CrossRefGoogle Scholar
  46. Kneib, R. T., 1987. Predation risk and use of intertidal habitats by young fishes and shrimp. Ecology 68: 379–386.CrossRefGoogle Scholar
  47. Kneib, R. T., 1997. The role of tidal marshes in the ecology of estuarine nekton. Oceanography and Marine Biology: An Annual Review 35: 163–220.Google Scholar
  48. Kneib, R. T. & S. L. Wagner, 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation. Marine Ecology Progress Series 106: 227–238.CrossRefGoogle Scholar
  49. Krause, J., D. J. Hoare, D. Croft, J. Lawrence, A. Ward, G. D. Ruxton, J. G. J. Godin & R. James, 2000. Fish shoal composition: mechanisms and constraints. Proceedings of the Royal Society of London Series B: Biological Sciences 267: 2011–2017.CrossRefPubMedCentralPubMedGoogle Scholar
  50. Landeau, L. & J. Terborgh, 1986. Oddity and the ‘confusion effect’ in predation. Animal Behaviour 34: 1372–1380.CrossRefGoogle Scholar
  51. Lefrançois, C. & G. Claireaux, 2003. Influence of ambient oxygenation and temperature on metabolic scope and scope for heart rate in the common sole Solea solea. Marine Ecology Progress Series 259: 273–284.CrossRefGoogle Scholar
  52. Magurran, A. E., W. J. Oulton & T. J. Pitcher, 1985. Vigilant behaviour and shoal size in minnows. Zeitschrift für Tierpsychologie 67: 167–178.CrossRefGoogle Scholar
  53. Makris, N. C., P. Ratilal, S. Jagannathan, Z. Gong, M. Andrews, I. Bertsatos, O. R. Godø, R. W. Nero & J. M. Jech, 2009. Critical population density triggers rapid formation of vast oceanic fish shoals. Science 323: 1734–1737.CrossRefPubMedGoogle Scholar
  54. McIvor, C. C. & W. E. Odum, 1988. Food, predation risk, and microhabitat selection in a marsh fish assemblage. Ecology 69: 1341–1351.CrossRefGoogle Scholar
  55. Miller, J. M. & M. L. Dunn, 1980. Feeding strategies and patterns of movement in juvenile estuarine fishes. In Kennedy, V. S. (Ed.), Estuarine Perspectives. Academic Press, New York: 437–448.CrossRefGoogle Scholar
  56. Minello, T. J., R. J. Zimmerman & E. X. Martinez, 1987. Fish predation on juvenile brown shrimp, Penaeus aztecus Ives: effects of turbidity and substratum on predation rates. Fishery Bulletin 85: 59–70.Google Scholar
  57. Minello, T. J., K. W. Able, M. P. Weinstein & C. G. Hays, 2003. Salt marshes as nurseries for nekton: testing hypotheses on density, growth and survival through meta-analysis. Marine Ecology Progress Series 246: 39–59.CrossRefGoogle Scholar
  58. Misund, O. A., 1993. Dynamics of moving masses: variability in packing density, shape, and size among herring, sprat, and saithe schools. ICES Journal of Marine Science: Journal du Conseil 50: 145–160.CrossRefGoogle Scholar
  59. Nøttestad, L., M. Aksland, A. Beltestad, A. Fernö, A. Johannessen & O. A. Misund, 1996. Schooling dynamics of Norwegian spring spawning herring (Clupea harengus L.) in a coastal spawning area. Sarsia 80: 277–284.Google Scholar
  60. Paramo, J., F. Gerlotto & C. Oyarzun, 2010. Three dimensional structure and morphology of pelagic fish schools. Journal of Applied Ichthyology 26: 853–860.CrossRefGoogle Scholar
  61. Parrish, J. K., 1991. Do predators ‘shape’ fish schools: Interactions between predators and their schooling prey. Netherlands Journal of Zoology 42: 358–370.CrossRefGoogle Scholar
  62. Paterson, A. W. & A. K. Whitfield, 2000. Do shallow-water habitats function as fefugia for juvenile fishes? Estuarine, Coastal and Shelf Science 51: 359–364.CrossRefGoogle Scholar
  63. Pitcher, T. & C. Wyche, 1983. Predator-avoidance behaviours of sand-eel schools: why schools seldom split. In Noakes, D. G., D. Lindquist, G. Helfman & J. Ward (eds), Predators and Prey in Fishes. Developments in Environmental Biology of Fishes, Vol. 2. Springer, Dordrecht: 193–204.Google Scholar
  64. Pitcher, T. J., 1983. Heuristic definitions of fish shoaling behaviour. Animal Behaviour 31: 611–613.CrossRefGoogle Scholar
  65. Pitcher, T. J., B. L. Partridge & C. S. Wardle, 1976. A blind fish can school. Science 194: 963–965.CrossRefPubMedGoogle Scholar
  66. Pitcher, T. J., A. E. Magurran & I. J. Winfield, 1982. Fish in larger shoals find food faster. Behavioral Ecology and Sociobiology 10: 149–151.CrossRefGoogle Scholar
  67. Pitcher, T. J. & J. K. Parrish, 1993. The functions of shoaling behaviour. In Pitcher, T. J. (Ed.), The Behaviour of Teleost Fishes, 2nd ed. Chapman and Hall, London: 363–439.CrossRefGoogle Scholar
  68. Pitcher, T. J., O. A. Misund, A. Fernö, B. Totland & V. Melle, 1996. Adaptive behaviour of herring schools in the Norwegian Sea as revealed by high-resolution sonar. ICES Journal of Marine Science: Journal du Conseil 53: 449–452.CrossRefGoogle Scholar
  69. Potthoff, M. & D. Allen, 2003. Site fidelity, home range, and tidal migrations of juvenile pinfish, Lagodon rhomboides, in salt marsh creeks. Environmental Biology of Fishes 67: 231–240.CrossRefGoogle Scholar
  70. Rieucau, G., K. M. Boswell, A. De Robertis, G. J. Macaulay & N. O. Handegard, 2014a. Experimental evidence of threat-sensitive collective avoidance responses in a large wild-caught herring school. PLoS One 9: e86726.CrossRefPubMedCentralPubMedGoogle Scholar
  71. Rieucau, G., A. De Robertis, K. M. Boswell & N. O. Handegard, 2014b. School density affects the strenght of collective antipredatory responses in wild-caught herring (Clupea harengus): A simulated predator encounter experiment. Journal of Fish Biology 85: 1650–1664.CrossRefPubMedGoogle Scholar
  72. Rieucau, G., A. Fernö, C. C. Ioannou & N. O. Handegard, 2014c. Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish. Reviews in Fish Biology and Fisheries. doi: 10.1007/s11160-014-9367-5.
  73. Robinson, C. J. & T. J. Pitcher, 1989. The influence of hunger and ration level on shoal density, polarization and swimming speed of herring, Clupea harengus L. Journal of Fish Biology 34: 631–633.CrossRefGoogle Scholar
  74. Rountree, R. & K. Able, 2007. Spatial and temporal habitat use patterns for salt marsh nekton: implications for ecological functions. Aquatic Ecology 41: 25–45.CrossRefGoogle Scholar
  75. Rozas, L. P. & M. LaSalle, 1990. A comparison of the diets of Gulf killifish, Fundulus grandis Baird and Girard, entering and leaving a Mississippi brackish marsh. Estuaries 13: 332–336.CrossRefGoogle Scholar
  76. Rozas, L. & T. Minello, 1997. Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats: a review of sampling design with focus on gear selection. Estuaries 20: 199–213.CrossRefGoogle Scholar
  77. Ruiz, G. M., A. H. Hines & M. H. Posey, 1993. Shallow water as a refuge habitat for fish and crustaceans in non-vegetated estuaries: an example from Chesapeake Bay. Marine Ecology Progress Series 99: 1–16.CrossRefGoogle Scholar
  78. Ryer, C. H., 1987. Temporal patterns of feeding by blue crabs (Callinectes sapidus) in a tidal-marsh creek and adjacent seagrass meadow in the lower Chesapeake Bay. Estuaries 10: 136–140.CrossRefGoogle Scholar
  79. Shingles, A., D. J. McKenzie, G. Claireaux & P. Domenici, 2005. Reflex cardioventilatory responses to hypoxia in the Flathead Gray Mullet (Mugil cephalus) and their behavioral modulation by perceived threat of predation and water turbidity. Physiological and Biochemical Zoology 78: 744–755.CrossRefPubMedGoogle Scholar
  80. Simmonds, J. & D. N. MacLennan, 2005. Fisheries Acoustics: Theory and Practice, 2nd ed. Blackwell Science, Oxford.CrossRefGoogle Scholar
  81. Smith, K. J. & K. W. Able, 2003. Dissolved oxygen dynamics in salt marsh pools and its potential impacts on fish assemblages. Marine Ecology Progress Series 258: 223–232.CrossRefGoogle Scholar
  82. Sogard, S. M. & B. L. Olla, 1997. The influence of hunger and predation risk on group cohesion in a pelagic fish, walleye pollock Theragra chalcogramma. Environmental Biology of Fishes 50: 405–413.CrossRefGoogle Scholar
  83. Soria, M., T. Bahri & F. Gerlotto, 2003. Effect of external factors (environment and survey vessel) on fish school characteristics observed by echosounder and multibeam sonar in the Mediterranean Sea. Aquatic Living Resources 16: 145–157.CrossRefGoogle Scholar
  84. Svensson, P. A., I. Barber & E. Forsgren, 2000. Shoaling behaviour of the two-spotted goby. Journal of Fish Biology 56: 1477–1487.CrossRefGoogle Scholar
  85. Thomson, J. M., 1955. The movements and migrations of Mullet (Mugil cephalus L.). Marine and Freshwater Research 6: 328–347.CrossRefGoogle Scholar
  86. Turner, G. F. & T. J. Pitcher, 1986. Attack abatement – a model for group protection by combined avoidance and dilution. American Naturalist 128: 228–240.CrossRefGoogle Scholar
  87. Webb, P. W., 1980. Does schooling reduce fast-start response latencies in teleosts? Comparative Biochemistry and Physiology Part A: Physiology 65: 231–234.CrossRefGoogle Scholar
  88. Weinstein, M. P., 1979. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina. Fisheries Bulletin 77: 339–357.Google Scholar
  89. Werner, E. E., J. F. Gilliam, D. J. Hall & G. G. Mittelbach, 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540–1548.CrossRefGoogle Scholar
  90. Whitfield, A. K., J. Panfili & J.-D. Durand, 2012. A global review of the cosmopolitan flathead mullet Mugil cephalus Linnaeus 1758 (Teleostei: Mugilidae), with emphasis on the biology, genetics, ecology and fisheries aspect of this apparent species complex. Reviews in Fish Biology and Fisheries 22: 641–681.CrossRefGoogle Scholar
  91. Wolf, N. G. & D. L. Kramer, 1987. Use of cover and the need to breathe: the effects of hypoxia on vulnerability of dwarf gouramis to predatory snakeheads. Oecologia 73: 127–132.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Guillaume Rieucau
    • 1
    Email author
  • Kevin M. Boswell
    • 2
  • Matthew E. Kimball
    • 3
  • Gabriel Diaz
    • 2
  • Dennis M. Allen
    • 3
  1. 1.Institute of Marine ResearchBergenNorway
  2. 2.Florida International UniversityNorth MiamiUSA
  3. 3.Baruch Marine Field LaboratoryUniversity of South CarolinaGeorgetownUSA

Personalised recommendations