Advertisement

Hydrobiologia

, Volume 750, Issue 1, pp 147–170 | Cite as

Aquatic invasive species: challenges for the future

  • John E. HavelEmail author
  • Katya E. Kovalenko
  • Sidinei Magela Thomaz
  • Stefano Amalfitano
  • Lee B. Kats
TRENDS IN AQUATIC ECOLOGY Review Paper

Abstract

Humans have effectively transported thousands of species around the globe and, with accelerated trade; the rate of introductions has increased over time. Aquatic ecosystems seem at particular risk from invasive species because of threats to biodiversity and human needs for water resources. Here, we review some known aspects of aquatic invasive species (AIS) and explore several new questions. We describe impacts of AIS, factors limiting their dispersal, and the role that humans play in transporting AIS. We also review the characteristics of species that should be the greatest threat for future invasions, including those that pave the way for invasions by other species (“invasional meltdown”). Susceptible aquatic communities, such as reservoirs, may serve as stepping stones for invasions of new landscapes. Some microbes disperse long distance, infect new hosts and grow in the external aquatic medium, a process that has consequences for human health. We also discuss the interaction between species invasions and other human impacts (climate change, landscape conversion), as well as the possible connection of invasions with regime shifts in lakes. Since many invaders become permanent features of the environment, we discuss how humans live with invasive species, and conclude with questions for future research.

Keywords

Climate change Dispersal barriers Functional homogenization Invasibility Invasional meltdown Invasiveness Propagule pressure Regime shifts Reservoirs 

Notes

Acknowledgments

We thank K. Martens for organizing this symposium volume and two anonymous reviewers for their insightful comments on an earlier version of this manuscript. SMT is especially thankful to the Brazilian National Council for Scientific and Technological Development (CNPq) for their continuous funding through a Research Productivity Grant.

References

  1. Adams, M. J., C. A. Pearl & R. B. Bury, 2003. Indirect facilitation of an anuran invasion by non-native fishes. Ecology Letters 6: 343–351.Google Scholar
  2. Aday, D., 2007. The presence of an invasive macrophyte (Phragmites australis) does not influence juvenile fish habitat use in a freshwater estuary. Journal of Freshwater Ecology 22: 535–537.Google Scholar
  3. Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.Google Scholar
  4. Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132.Google Scholar
  5. Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.Google Scholar
  6. Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters, 2nd ed. Springer, Dordrecht.Google Scholar
  7. Amalfitano, S., M. Coci, G. Corno & G. M. Luna, 2015. A microbial perspective on biological invasions in aquatic ecosystems. Hydrobiologia 746: 13–22.Google Scholar
  8. Balian, E. V., H. Segers, C. Lévèque & K. Martens, 2008. The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595: 627–637.Google Scholar
  9. Banks, C. M. & I. C. Duggan, 2009. Lake construction has facilitated calanoid copepod invasions in New Zealand. Diversity and Distributions 15: 80–87.Google Scholar
  10. Bates, A. E., C. M. McKelvie, C. J. B. Sorte, S. A. Morley, N. A. R. Jones, J. A. Mondon, T. J. Bird & G. Quinn, 2013. Geographical range, heat tolerance and invasion success in aquatic species. Proceedings of the Royal Society B: Biological Sciences 280: 20131958.PubMedCentralPubMedGoogle Scholar
  11. Beisner, B. E., P. R. Peres-Neto, E. S. Lindstrom, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.PubMedGoogle Scholar
  12. Bell, G., 1982. The Masterpiece of Nature: The Evolution and Genetics of Sexuality. University of California Press, Berkeley.Google Scholar
  13. Bij de Vaate, A., K. Jazdzewski, H. A. M. Ketelaars, S. Gollasch & G. Van der Velde, 2002. Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 59: 1159–1174.Google Scholar
  14. Bilton, D. T., J. R. Freeland & B. Okamura, 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32: 159–181.Google Scholar
  15. Blokesch, M. & G. K. Schoolnik, 2007. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLOS Pathogens 3: 733–742.Google Scholar
  16. Bobeldyk, A. M., J. Rüegg & G. A. Lamberti, 2015. Freshwater hotspots of biological invasion are a function of species-pathway interactions. Hydrobiologia 746: 363–373.Google Scholar
  17. Boltovskoy, D., N. Correa, D. Cataldo & F. Sylvester, 2006. Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Rio de la Plata watershed and beyond. Biological Invasions 8: 947–963.Google Scholar
  18. Bossenbroek, J. M., C. E. Kraft & J. C. Nekola, 2001. Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecological Applications 11: 1778–1788.Google Scholar
  19. Brendonck, L. & B. J. Riddoch, 1999. Wind-borne short-range egg dispersal in anostracans (Crustacea: Branchiopoda). Biological Journal of the Linnean Society 67: 87–95.Google Scholar
  20. Bright, C., 1998. Life Out of Bounds: Bioinvasion in a Borderless World. W. W. Norton and Company Inc, New York.Google Scholar
  21. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.PubMedGoogle Scholar
  22. Brown, J. H. & M. V. Lomolino, 1998. Biogeography, 2nd ed. Sinauer, Sunderland, MA.Google Scholar
  23. Bryce, R., M. K. Oliver, L. Davies, H. Gray, J. Urquhart & X. Lambin, 2011. Turning back the tide of American mink invasion at an unprecedented scale through community participation and adaptive management. Biological Conservation 144: 575–583.Google Scholar
  24. Buchan, L. A. J. & D. K. Padilla, 1999. Estimating the probability of long-distance overland dispersal of invading aquatic species. Ecological Applications 9: 254–265.Google Scholar
  25. Bunn, S. E., P. M. Davies, D. M. Kellaway & I. P. Prosser, 1998. Influence of invasive macrophytes on channel morphology and hydrology in an open tropical lowland stream, and potential control by riparian shading. Freshwater Biology 39: 171–178.Google Scholar
  26. Cabral, J. P., 2010. Water microbiology. Bacterial pathogens and water. International Journal of Environmental Research and Public Health 7: 3657–3703.PubMedCentralPubMedGoogle Scholar
  27. Capers, R. S., R. Selsky, G. J. Bugbee & J. C. White, 2007. Aquatic plant community invasibility and scale-dependent patterns in native and invasive species richness. Ecology 88: 3135–3143.PubMedGoogle Scholar
  28. Carlsson, N. O. L., C. Brönmark & L. A. Hansson, 2004. Invading herbivory: the golden apple snail alters ecosystem functioning in Asian wetlands. Ecology 85: 1575–1580.Google Scholar
  29. Carlsson, N. O. L., H. Bustamante, D. L. Strayer & M. L. Pace, 2011. Biotic resistance on the increase: native predators structure invasive zebra mussel populations. Freshwater Biology 56: 1630–1637.Google Scholar
  30. Carlton, J. T., 1992. Dispersal of living organisms into aquatic ecosystems as mediated by aquaculture and fisheries activities. In Rosenfield, A. & R. Mann (eds), Dispersal of Living Organisms into Aquatic Ecosystems. Maryland Sea Grant, College Park, MD: 13–45.Google Scholar
  31. Carlton, J. T. & J. B. Geller, 1993. Ecological roulette: the global transport of nonindigenous marine organisms. Science 261: 78–82.Google Scholar
  32. Catford, J. A., R. Jansson & C. Nilsson, 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions 15: 22–40.Google Scholar
  33. Chucholl, C., 2013. Feeding ecology and ecological impact of an alien ‘warm-water’ omnivore in cold lakes. Limnologica 43: 219–229.Google Scholar
  34. Clavero, M., V. Hermoso, E. Aparicio & F. N. Godinho, 2013. Biodiversity in heavily modified waterbodies: native and introduced fish in Iberian reservoirs. Freshwater Biology 58: 1190–1201.Google Scholar
  35. Codd, G. A., L. F. Morrison & J. S. Metcalf, 2005. Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology 203: 264–272.PubMedGoogle Scholar
  36. Conn, D. B., 2014. Aquatic invasive species and emerging infectious disease threats: a one health perspective. Aquatic Invasions. 9(3): 383–390.Google Scholar
  37. Corbin, J. D. & C. M. D’Antonio, 2012. Gone but not forgotten? Invasive plants’ legacies on community and ecosystem properties. Invasive Plant Science and Management 5: 117–124.Google Scholar
  38. Couch, R. & E. Nelson, 1985. Myriophyllum spicatum in North America. In Anderson, L. W. J. (ed.), Proceedings, First International Symposium on Watermilfoil (Myriophyllum spicatum) and related Haloragaceae Species. Aquatic Plant Management Society, Washington DC: 8–18.Google Scholar
  39. Cucherousset, J., J. M. Paillisson, A. Carpentier, M. C. Eybert & J. D. Olden, 2006. Habitat use of an artificial wetland by the invasive catfish Ameiurus melas. Ecology of Freshwater Fish 15: 589–596.Google Scholar
  40. Cunha, E. R., S. M. Thomaz, H. B. A. Evangelista, J. Carniatto, C. F. Souza & R. Fugi, 2011. Small-sized fish assemblages do not differ between a native and a recently established non-indigenous macrophyte in a Neotropical ecosystem. Natureza & Conservação (Brazilian Journal of Nature and Conservation) 9: 61–66.Google Scholar
  41. D’Antonio, C. M., J. T. Tunison & R. K. Loh, 2000. Variation in the impact of exotic grasses on native plant composition in relation to fire across an elevation gradient in Hawaii. Austral Ecology 25: 507–522.Google Scholar
  42. De Schryver, P. & O. Vadstein, 2014. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME Journal 8: 2360–2368.PubMedCentralPubMedGoogle Scholar
  43. De Vanna, K. M., B. L. Bodamer, C. G. Wellington, E. Hammer, C. M. Mayer & J. M. Bossenbroek, 2011. An alternative hypothesis to invasional meltdown in the Laurentian Great Lakes region: general facilitation by Dreissena. Journal of Great Lakes Research 37: 632–641.Google Scholar
  44. Devin, S., C. Piscart, J. N. Beisel & J. C. Moreteau, 2003. Ecological traits of the amphipod invader Dikerogammarus villosus on a mesohabitat scale. Archiv für Hydrobiologie 158: 43–56.Google Scholar
  45. Dibble, E. D. & K. Kovalenko, 2009. Ecological impact of grass carp: a review of the available data. Journal of Aquatic Plant Management 47: 1–15.Google Scholar
  46. Dodson, S. I. & D. G. Frey, 2001. Cladocera and other Branchiopoda. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Academic Press, San Diego: 850–914.Google Scholar
  47. Dornelas, M., N. J. Gotelli, B. McGill, H. Shimadzu, F. Moyes, C. Sievers & A. E. Magurran, 2014. Assemblage time series reveal biodiversity change but not systematic loss. Science 344: 296–299.PubMedGoogle Scholar
  48. Douglas, M. M. & R. A. O’Connor, 2003. Effects of the exotic macrophyte, para grass (Urochloa mutica), on benthic and epiphytic macroinvertebrates of a tropical floodplain. Freshwater Biology 48: 962–971.Google Scholar
  49. Downing, A. S., E. H. van Nes, W. M. Mooij & M. Scheffer, 2012. The resilience and resistance of an ecosystem to a collapse of diversity. PLoS One 7: e46135.PubMedCentralPubMedGoogle Scholar
  50. Downing, A. S., N. Galic, K. P. C. Goudswaard, E. H. van Nes, M. Scheffer, F. Witte & W. M. Mooij, 2013. Was Lates Late? A null model for the Nile perch moom in Lake Victoria. Plos One 8: e76847.PubMedCentralPubMedGoogle Scholar
  51. Drake, L. A., M. A. Doblin & F. C. Dobbs, 2007. Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Marine Pollution Bulletin 55: 333–341.PubMedGoogle Scholar
  52. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.PubMedGoogle Scholar
  53. Dukes, J. S., 2011. Responses of invasive species to a changing climate and atmosphere. In Richardson, D. M. (Ed.), Fifty Years of Invasion Ecology: The Legacy of Charles Elton. Wiley Blackwell, Oxford: 345–357.Google Scholar
  54. Dullinger, S., F. Essl, W. Rabitsch, K. H. Erb, S. Gingrich, H. Haberl, K. Hulber, V. Jarosik, F. Kraussman, I. Kuhn, J. Pergl, P. Pyšek & P. E. Hulme, 2013. Europe’s other debt crisis caused by the long legacy of future extinctions. Proceedings of the National Academy of Sciences 110: 7342–7347.Google Scholar
  55. Duncan, R. P., 2011. Propagule pressure. In Simberloff, D. & M. Rejmánek (eds), Encyclopedia of Biological Invasions. University of California Press, Berkeley: 561–563.Google Scholar
  56. Ehrlich, P. R., 1986. Which animal will invade? In Mooney, H. A. & J. A. Drake (eds), Ecology of Biological Invasions of North America and Hawaii. Springer-Verlag, New York, NY: 79–95.Google Scholar
  57. Elton, C. S., 1958. The Ecology of Invasions by Animals and Plants. Methuen, London.Google Scholar
  58. Fazi, S., S. Amalfitano, C. Piccini, A. Zoppini, A. Puddu & J. Pernthaler, 2008. Colonization of overlaying water by bacteria from dry river sediments. Environmental Microbiology 10: 2760–2772.PubMedGoogle Scholar
  59. Fierer, N., 2008. Microbial biogeography: patterns in microbial diversity across space and time. In Zengler, K. (ed.), Accessing Uncultivated Microorganisms: From the Environment to Organisms and Genomes and Back. ASM Press, Washington, DC: 95–115.Google Scholar
  60. Fontaneto, D., 2011. Biogeography of Microscopic Organisms: Is Everything Small Everywhere?. Cambridge University Press, Cambridge.Google Scholar
  61. Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman & B. Von Holle, 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88: 3–17.PubMedGoogle Scholar
  62. Früh, D., S. Stoll & P. Haase, 2012a. Physicochemical and morphological degradation of stream and river habitats increases invasion risk. Biological Invasions 14: 2243–2253.Google Scholar
  63. Früh, D., S. Stoll & P. Haase, 2012b. Physico-chemical variables determining the invasion risk of freshwater habitats by alien mollusks and crustaceans. Ecology and Evolution 2: 2843–2853.PubMedCentralPubMedGoogle Scholar
  64. Gaertner, M., R. Biggs, M. Te Beest, C. Hui, J. Molofsky & D. M. Richardson, 2014. Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships. Diversity and Distributions 20: 733–744.Google Scholar
  65. Gaeta, J. W., T. R. Hrabik, G. G. Sass, B. M. Roth, S. J. Gilbert, & M. J. Vander Zanden, 2015. A whole-lake experiment to control invasive rainbow smelt (Actinoperygii, Osmeridae) via overharvest and a food web manipulation. Hydrobiologia 746: 433–444.Google Scholar
  66. García-Berthou, E., C. Alcaraz, Q. Pou-Rovira, L. Zamora, G. Coenders & C. Feo, 2005. Introduction pathways and establishment rates of invasive aquatic species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 62: 453–463.Google Scholar
  67. Gatto, M., L. Mari, E. Bertuzzo, R. Casagrandi, L. Righetto, I. Rodriguez-Iturbe & A. Rinaldo, 2013. Spatially explicit conditions for waterborne pathogen invasion. American Naturalist 182: 328–346.PubMedGoogle Scholar
  68. Genovesi, P., 2005. Eradications of invasive alien species in Europe: a review. Biological Invasions 7: 127–133.Google Scholar
  69. Ger, K. A., L. A. Hansson & M. Lürling, 2014. Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshwater Biology 59: 1783–1798.Google Scholar
  70. Gido, K. B., J. F. Schaefer & J. A. Falke, 2009. Convergence of fish communities from the littoral zone of reservoirs. Freshwater Biology 54: 1163–1177.Google Scholar
  71. Gillson, L., A. Ekblom, K. J. Willis & C. Froyd, 2008. Holocene paleo-invasions: the link between pattern, process and scale in invasion ecology. Landscape Ecology 23: 757–769.Google Scholar
  72. Goldschmidt, T., F. Witte & J. Wanink, 1993. Cascading effects of the introduced Nile Perch on the detritivorous/phytoplanktivorous species in the sublittoral areas of Lake Victoria. Conservation Biology 7: 686–700.Google Scholar
  73. Gordon, D. R., D. A. Onderdonk, A. M. Fox & R. K. Stocker, 2008. Accuracy of the Australian Weed Risk Assessment system across varied geographies. Diversity and Distributions 14: 234–242.Google Scholar
  74. Gordon-Bradley, N., N. Li & H. N. Williams, 2015. Bacterial community structure in freshwater springs infested with the invasive plant species Hydrilla verticillata. Hydrobiologia 742: 221–232.Google Scholar
  75. Green, J. & B. J. Bohannan, 2006. Spatial scaling of microbial biodiversity. Trends in Ecology & Evolution 21: 501–507.Google Scholar
  76. Guisan, A., B. Petitpierre, O. Broennimann, C. Daehler & C. Kueffer, 2014. Unifying niche shift studies: insights from biological invasions. Trends in Ecology & Evolution 29: 260–269.Google Scholar
  77. Hairston, N. G. & C. E. Cáceres, 1996. Distribution of crustacean diapause: micro and macroevolutionary pattern and process. Hydrobiologia 320: 27–44.Google Scholar
  78. Hajek, A., 2004. Natural Enemies: An Introduction to Biological Control. Cambridge University Press, Cambridge.Google Scholar
  79. Hall Jr., R. O., J. L. Tank & M. F. Dybdahl, 2003. Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Frontiers in Ecology and the Environment 1: 407–411.Google Scholar
  80. Hansen, G. J. A., C. L. Hein, B. M. Roth, M. J. Vander Zanden, J. W. Gaeta, A. W. Latzka & S. R. Carpenter, 2013. Food web consequences of long-term invasive crayfish control. Canadian Journal of Fisheries and Aquatic Sciences 70: 1109–1122.Google Scholar
  81. Hanski, I., 1999. Metapopulation Ecology. Oxford University Press, Oxford.Google Scholar
  82. Hassan, A. & A. Ricciardi, 2014. Are non-native species more likely to become pests? Influence of biogeographic origin on the impacts of freshwater organisms. Frontiers in Ecology and Environment 12: 218–223.Google Scholar
  83. Havel, J. E. & J. B. Shurin, 2004. Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnology and Oceanography 49: 1229–1238.Google Scholar
  84. Havel, J. E., J. B. Shurin & J. R. Jones, 2002. Estimating dispersal from patterns of spread: spatial and local control of invasion by Daphnia lumholtzi in Missouri lakes. Ecology 83: 3306–3318.Google Scholar
  85. Havel, J. E., C. E. Lee & M. J. Vander Zanden, 2005a. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518–525.Google Scholar
  86. Havel, J. E., J. B. Shurin & J. R. Jones, 2005b. Environmental limits to a rapidly spreading exotic cladoceran. EcoScience 12: 376–385.Google Scholar
  87. Havel, J. E., L. A. Bruckerhoff, M. A. Funkhouser & A. R. Gemberling, 2015. Resistance to desiccation in aquatic invasive snails and implications for their overland dispersal. Hydrobiologia 741: 89–100.Google Scholar
  88. Hilderbrand, R. H., R. M. Utz, S. A. Stranko & R. L. Raesly, 2010. Applying thresholds to forecast potential biodiversity loss from human development. Journal of the North American Benthological Society 29: 1009–1016.Google Scholar
  89. Hornak, K. & G. Corno, 2012. Every coin has a back side: invasion by Limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities. PLOS One 7: e51576.PubMedCentralPubMedGoogle Scholar
  90. Hughes, T. P., C. Linares, V. Dakos, I. A. van de Leemput & E. H. van Nes, 2013. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends in Ecology and Evolution 28: 149–155.PubMedGoogle Scholar
  91. Hulme, P. E., 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology 46: 10–18.Google Scholar
  92. Hulme, P. E., 2011. Biosecurity: the changing face of invasion biology. In Richardson, D. M. (ed.), Fifty Years of Invasion Ecology: The Legacy of Charles Elton. Blackwell Publishing, Oxford: 301–314.Google Scholar
  93. Hulme, P. E., P. Pysek, V. Jarosik, J. Pergl, U. Schaffner & M. Vila, 2013. Bias and error in understanding plant invasion impacts. Trends in Ecology & Evolution 28: 212–218.Google Scholar
  94. Ibanez, I., J. M. Diez, L. P. Miller, J. D. Olden, C. J. B. Sorte, D. M. Blumenthal, B. A. Bradley, C. M. D’Antonio, J. S. Dukes, R. I. Early, E. D. Grosholz & J. J. Lawler, 2014. Integrated assessment of biological invasions. Ecological Applications 24: 25–37.PubMedGoogle Scholar
  95. Incagnone, G., F. Marrone, R. Barone, L. Robba & L. Naselli-Flores, 2014. How do freshwater organisms cross the “dry ocean”? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 2014: 1–21.Google Scholar
  96. Jenkins, D. G. & A. L. J. Buikema, 1998. Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecological Monographs 68: 421–443.Google Scholar
  97. Jenkins, D. G., C. R. Brescacin, C. V. Duxbury, J. A. Elliott, J. A. Evans, K. R. Grablow, M. Hillegass, B. N. Lyon, G. A. Metzger, M. L. Olandese, D. Pepe, G. A. Silvers, H. N. Suresch, T. N. Thompson, C. M. Trexler, G. E. Williams, N. C. Williams & S. E. Williams, 2007. Does size matter for dispersal distance? Global Ecology and Biogeography 16: 415–425.Google Scholar
  98. Jeschke, J. M., L. G. Aparicio, S. Haider, T. Heger, C. J. Lortie, P. Pyšek & D. L. Strayer, 2012. Support for major hypotheses in invasion biology is uneven and declining. Neobiota 14: 1–20.Google Scholar
  99. Johnson, L. E. & D. K. Padilla, 1996. Geographic spread of exotic species: ecological lessons and opportunities from the invasion of the zebra mussel Dreissena polymorpha. Biological Conservation 78: 23–33.Google Scholar
  100. Johnson, L. E., J. M. Bossenbroek & C. E. Kraft, 2006. Patterns and pathways in the post-establishment spread of non-indigenous aquatic species: the slowing invasion of North American inland lakes by the zebra mussel. Biological Invasions 8: 475–489.Google Scholar
  101. Johnson, P. T. J., J. D. Olden & M. J. Vander Zanden, 2008. Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and Environment 6: 357–363.Google Scholar
  102. Johnstone, L. M., B. T. Coffey & C. Howard-Williams, 1985. The role of recreational boat traffic in interlake dispersal of macrophytes: a New Zealand case study. Journal of Environmental Management 20: 263–279.Google Scholar
  103. Karatayev, A. Y., L. E. Burlakova, D. K. Padilla, S. E. Mastitsky & S. Olenin, 2009. Invaders are not a random selection of species. Biological Invasions 11: 2009–2019.Google Scholar
  104. Kats, L. B., G. M. Bucciarelli, T. L. Vandergon, R. L. Honeycutt, E. Mattiasen, A. Sanders, S. P. D. Riley, J. L. Kerby & R. N. Fisher, 2013. Effects of natural flooding and manual trapping on the facilitation of invasive crayfish-native amphibian coexistence in a semi-arid perennial stream. Journal of Arid Environments 98: 109–112.Google Scholar
  105. Kestrup, A. M., S. H. Thomas, K. van Rensburg, A. Ricciardi & M. A. Duffy, 2009. Differential infection of exotic and native freshwater amphipods by a parasitic water mold in the St. Lawrence River. Biological Invasions 13: 769–779.Google Scholar
  106. King, R. S., M. E. Baker, P. F. Kazyak & D. E. Weller, 2011. How novel is too novel? Stream community thresholds at exceptionally low levels of catchment urbanization. Ecological Applications 21: 1659–1678.PubMedGoogle Scholar
  107. Knapp, R. A. & O. Sarnelle, 2008. Recovery after local extinction: factors affecting re-establishment of alpine lake zooplankton. Ecological Applications 18: 1850–1859.PubMedGoogle Scholar
  108. Knapp, R. A., D. M. Boiano & V. T. Vredenberg, 2007. Removal of nonnative fish results in population expansion of a declining amphibian (mountain yellow-legged frog, Rana muscosa). Biological Conservation 135: 11–20.PubMedCentralPubMedGoogle Scholar
  109. Kolar, C. S. & D. M. Lodge, 2000. Freshwater nonindigenous species: interactions with other global changes. In Mooney, H. A. & R. J. Hobbs (eds), Invasive Species in a Changing World. Island Press, Washington DC: 3–30.Google Scholar
  110. Kolar, C. S. & D. M. Lodge, 2002. Ecological predictions and risk assessment for alien fishes in North America. Science 298: 1233–1236.PubMedGoogle Scholar
  111. Kovalenko, K. E., V. J. Brady, T. N. Brown, J. J. H. Ciborowski, N. P. Danz, J. P. Gathman, G. E. Host, R. W. Howe, L. B. Johnson, G. J. Niemi & E. D. Reavie, 2014. Congruence of community thresholds in response to anthropogenic stressors in Great Lakes coastal wetlands. Freshwater Science 33(3): 958–971.Google Scholar
  112. Kurath, G. & J. Winton, 2011. Complex dynamics at the interface between wild and domestic viruses of finfish. Current Opinion in Virology 1: 73–80.PubMedGoogle Scholar
  113. Ladau, J., T. J. Sharpton, M. M. Finucane, G. Jospin, S. W. Kembel, J. O’Dwyer, A. F. Koeppel, J. L. Green & K. S. Pollard, 2013. Global marine bacterial diversity peaks at high latitudes in winter. ISME Journal 7: 1669–1677.PubMedCentralPubMedGoogle Scholar
  114. Leclerc, H., L. Schwartzbrod & E. Dei-Cas, 2002. Microbial agents associated with waterborne diseases. Critical Reviews in Microbiology 28: 371–409.PubMedGoogle Scholar
  115. Lennon, J. T. & S. E. Jones, 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Reviews Microbiology 9: 119–130.PubMedGoogle Scholar
  116. Levine, J. M., P. B. Adler & S. G. Yelenik, 2004. A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters 7: 975–989.Google Scholar
  117. Lindstrom, E. S. & S. Langenheder, 2011. Local and regional factors influencing bacterial community assembly. Environmental Microbiology Reports 4: 1–9.PubMedGoogle Scholar
  118. Litchman, E., 2010. Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecology Letters 13: 1560–1572.PubMedGoogle Scholar
  119. Lodge, D. M., C. A. Taylor, D. M. Holdich & J. Skurdal, 2000. Nonindigenous crayfishes threaten North American biodiversity: lessons from Europe. Fisheries 25: 7–20.Google Scholar
  120. Loyola, R. D., J. C. Nabout, J. Trindale-Filho, P. Lemes & J. N. Urbina-Cardona, 2012. Climate change might drive species into reserves: a case study of the American bullfrog in the Atlantic Forest Biodiversity Hotspot. Alytes 29: 61–74.Google Scholar
  121. Luja, V. H. & R. Rodriguez-Estrella, 2010. Are tropical cyclones sources of natural selection? Observations on the abundance and behavior of frogs by extreme events in Baja California Peninsula, Mexico. Journal of Arid Environments 74: 1345–1347.Google Scholar
  122. Luna, G. M., C. Vignaroli, C. Rinaldi, A. Pusceddu, L. Nicoletti, M. Gabellini, R. Danovaro & F. Biavasco, 2010. Extraintestinal Escherichia coli carrying virulence genes in coastal marine sediments. Applied and Environmental Microbiology 76: 5659–5668.PubMedCentralPubMedGoogle Scholar
  123. MacIsaac, H. J., T. C. Robbins & M. A. Lewis, 2002. Modeling ships’ ballast water as invasion threats to the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1245–1256.Google Scholar
  124. Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout & F. A. Bazzaz, 2000. Biotic invasions: causes, epidemiology, global consequences and control. Ecological Applications 10: 689–710.Google Scholar
  125. Madsen, J. D., J. W. Sutherland, J. A. Bloomfield, L. W. Eichler & C. W. Boylen, 1991. The decline of native vegetation under dense Eurasian watermilfoil canopies. Journal of Aquatic Plant Management 29: 94–99.Google Scholar
  126. Marchetti, M. P., T. Light, P. B. Moyle & J. H. Viers, 2004. Fish invasions in California watersheds: testing hypotheses using landscape patterns. Ecological Applications 14: 1507–1525.Google Scholar
  127. Martiny, J. B. H., B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. Naeem, L. Øvreås, A. L. Reysenbach, V. H. Smith & J. T. Staley, 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology 4: 102–112.PubMedGoogle Scholar
  128. McComas, S., 1993. Lake Smarts: The First Lake Maintenance Handbook. Terrene Institute, Washington, DC.Google Scholar
  129. McMahon, R. F., 2002. Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Canadian Journal of Fisheries and Aquatic Sciences 59: 1235–1244.Google Scholar
  130. Michelan, T. S., S. M. Thomaz, R. P. Mormul & P. Carvalho, 2010. Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biology 55: 1315–1326.Google Scholar
  131. Michelan, T. S., S. M. Thomaz & L. M. Bini, 2013. Native macrophyte density and richness matter for invasiveness of a tropical Poaceae. Plos One 8: e60004.PubMedCentralPubMedGoogle Scholar
  132. Michelan, T. S., D. K. Petsch, G. D. Pinha, M. J. Silveira & S. M. Thomaz, 2014. The invasive aquatic macrophyte Hydrilla verticillata facilitates the establishment of the invasive mussel Limnoperna fortunei in Neotropical reservoirs. Journal of Limnology 73(3): 598–602.Google Scholar
  133. Mills, E. L., J. H. Leach, J. T. Carlton & C. L. Secor, 1993. Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. Journal of Great Lakes Research 19: 1–54.Google Scholar
  134. Morens, D. M., G. K. Folkers & A. S. Fauci, 2004. The challenge of emerging and re-emerging infectious diseases. Nature 430: 242–249.PubMedGoogle Scholar
  135. Mormul, R. P., S. M. Thomaz, J. Higuti & K. Martens, 2010. Ostracod (Crustacea) colonization of a native and a non-native macrophyte species of Hydrocharitaceae in the Upper Paraná floodplain (Brazil): an experimental evaluation. Hydrobiologia 644: 185–193.Google Scholar
  136. Mormul, R. P., J. Ahlgren, M. K. Ekvall, L. Hansson & C. Brönmark, 2012. Water brownification may increase the invasibility of a sub-merged non-native macrophyte. Biological Invasions 14: 2091–2099.Google Scholar
  137. Moyle, P. B. & T. Light, 1996. Biological invasions of freshwater: empirical rules and assembly theory. Biological Conservation 78: 149–161.Google Scholar
  138. Nicholls, K. H., J. A. Hoyle, O. E. Johannsson & R. Dermott, 2011. A biological regime shift in the Bay of Quinte ecosystem (Lake Ontario) associated with the establishment of invasive dreissenid mussels. Journal of Great Lakes Research 37: 310–317.Google Scholar
  139. O´Farrel, I., P. T. Pinto, P. L. Rodríguez, G. Chaparro & H. N. Pizarro, 2009. Experimental evidence of the dynamic effect of free-floating plants on phytoplankton ecology. Freshwater Biology 54: 363–375.Google Scholar
  140. Olden, J. D., N. L. Poff, M. R. Douglas, M. E. Douglas & K. D. Fausch, 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution 19: 18–24.PubMedGoogle Scholar
  141. Olden, J. D., N. L. Poff & K. R. Bestgen, 2006. Life-history strategies predict fish invasions and extirpations in the Colorado River basin. Ecological Monographs 76: 25–40.Google Scholar
  142. Padilla, D. K. & S. L. Williams, 2004. Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Frontiers in Ecology and the Environment 2: 131–138.Google Scholar
  143. Paerl, H. W. & V. J. Paul, 2011. Climate change: links to global expansion of harmful cyanobacteria. Water Research 46: 1349–1363.PubMedGoogle Scholar
  144. Pandolfi, J. M. & C. E. Lovelock, 2014. Novelty trumps loss in global biodiversity. Science 344: 266–267.PubMedGoogle Scholar
  145. Parker, J. D., C. C. Caudill & M. E. Hay, 2007. Beaver herbivory on aquatic plants. Oecologia 151: 616–625.PubMedGoogle Scholar
  146. Pascal, M. & O. Lorvelec, 2005. Holocene turnover of the French vertebrate fauna. Biological Invasions 7: 99–106.Google Scholar
  147. Pedlow, C. L., E. D. Dibble & K. D. Getsinger, 2006. Littoral habitat heterogeneity and shifts in plant composition relative to a fall whole-lake fluridone application in Perch Lake, Michigan. Journal of Aquatic Plant Management 44: 26–31.Google Scholar
  148. Pelicice, F. M. & A. A. Agostinho, 2009. Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a neotropical reservoir. Biological Invasions 11: 1789–1801.Google Scholar
  149. Pelicice, F. M., J. R. S. Vitule, D. P. Lima, M. L. Orsi & A. A. Agostinho, 2014. A serious new threat to Brazilian freshwater ecosystems: the naturalization of nonnative fish by decree. Conservation Letters 7: 55–60.Google Scholar
  150. Perna, C. N. & D. Burrows, 2005. Improved dissolved oxygen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River floodplain, Australia. Marine Pollution Bulletin 51: 138–148.PubMedGoogle Scholar
  151. Perna, C. N., M. Cappo, B. J. Pusey, D. W. Burrows & R. G. Pearson, 2012. Removal of aquatic weeds greatly enhances fish community richness and diversity: an example from the Burdekin River floodplain, tropical Australia. River Research and Applications 28: 1093–1104.Google Scholar
  152. Peter, C. R. & D. M. Burdick, 2010. Can plant competition and diversity reduce the growth and survival of exotic Phragmites australis invading a tidal marsh? Estuaries and Coasts 33: 1225–1236.Google Scholar
  153. Pimentel, D., R. Zuniga & D. Morrison, 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273–288.Google Scholar
  154. Pintor, L. M. & A. Sih, 2011. Scale dependent effects of native prey diversity, prey biomass and natural disturbance on the invasion success of an exotic predator. Biological Invasions 13: 1357–1366.Google Scholar
  155. Pommier, T., B. Canbäck, L. Riemann, K. H. Boström, K. Simu, P. Lundberg, A. Tunlid & Å. Hagström, 2007. Global patterns of diversity and community structure in marine bacterioplankton. Molecular Ecology 16: 867–880.PubMedGoogle Scholar
  156. Power, M. E., 1990. Effects of fish in river food webs. Science 250: 811–814.PubMedGoogle Scholar
  157. Pyšek, P. & D. M. Richardson, 2010. Invasive species, environmental change and management, and health. Annual Review of Environment and Resources 35: 25–55.Google Scholar
  158. Pyšek, P., V. Jarošík, P. E. Hulme, J. Pergl, M. Hejda, U. Schaffner & M. Vilà, 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biology 18: 1725–1737.PubMedCentralGoogle Scholar
  159. Rahel, F. J., 2002. Homogenization of freshwater faunas. Annual Review of Ecology and Systematics 33: 291–315.Google Scholar
  160. Rahel, F. J. & J. D. Olden, 2008. Assessing the effects of climate change on aquatic invasive species. Conservation Biology 22: 521–533.PubMedGoogle Scholar
  161. Ramette, A. & J. M. Tiedje, 2007. Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microbial Ecology 53: 197–207.PubMedGoogle Scholar
  162. Raven, P. H., R. F. Evert & S. E. Eichhorn, 1999. Biology of Plants. Freeman W. H. and Company, New York, NY.Google Scholar
  163. Ricciardi, A., 2001. Facilitative interactions among aquatic invaders: is an “invasvional meltdown” occurring in the Great Lakes? Canadian Journal of Fisheries and Aquatic Sciences 58: 2513–2525.Google Scholar
  164. Ricciardi, A., 2007. Are modern biological invasions an unprecedented form of global change? Conservation Biology 21: 329–336.PubMedGoogle Scholar
  165. Ricciardi, A. & H. J. MacIsaac, 2000. Recent mass invasion of the North American Great Lakes by Ponto-Caspian species. Trends in Ecology and Evolution 15: 62–65.PubMedGoogle Scholar
  166. Ricciardi, A. & J. B. Rasmussen, 1999. Extinction rates of North American freshwater fauna. Conservation Biology 13: 1220–1222.Google Scholar
  167. Riley, S. P. D., G. T. Busteed, L. B. Kats, T. L. Vandergon, L. F. S. Lee, R. G. Dagit, J. L. Kerby, R. N. Fisher & R. M. Sauvajot, 2005. Effects of urbanization on the distribution and abundance of amphibians and invasive species in southern California streams. Conservation Biology 19: 1894–1907.Google Scholar
  168. Romanuk, T. N., Y. Zhou, U. Brose, E. L. Berlow, R. J. Williams & N. D. Martinez, 2009. Predicting invasion success in complex ecological networks. Philosophical Transactions of the Royal Society B: Biological Sciences 364: 1743–1754.Google Scholar
  169. Romero, L., A. Camacho, E. Vicente & M. R. Miracle, 2006. Sedimentation patterns of photosynthetic bacteria based on pigment markers in meromictic Lake La Cruz (Spain): paleolimnological implications. Journal of Paleolimnology 35: 167–177.Google Scholar
  170. Rooney, N. & K. S. McCann, 2012. Integrating food web diversity, structure and stability. Trends in Ecology and Evolution 27: 40–46.PubMedGoogle Scholar
  171. Roossinck, M. J., 2011. The big unknown: plant virus biodiversity. Current Opinion in Virology 1: 63–67.PubMedGoogle Scholar
  172. Rosenberg, D. M., P. McCully & C. M. Pringle, 2000. Global-scale environmental effects of hydrological alterations: introduction. BioScience 50: 746–751.Google Scholar
  173. Rúa, M. A., E. C. Pollina, A. G. Power & C. E. Mitchell, 2011. The role of viruses in biological invasions: friend or foe? Current Opinion in Virology 1: 68–72.PubMedGoogle Scholar
  174. Sala, O. E., F. S. Chapin III, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.PubMedGoogle Scholar
  175. Säterberg, T., S. Sellman & B. Ebenman, 2013. High frequency of functional extinctions in ecological networks. Nature 499: 468–471.PubMedGoogle Scholar
  176. Schauer, R., C. Bienhold, A. Ramette & J. Harder, 2009. Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. ISME Journal 4: 159–170.PubMedGoogle Scholar
  177. Scheffer, M., 2009. Critical Transitions in Nature and Society. Princeton University Press, Princeton, NJ.Google Scholar
  178. Scheffer, M., S. Szabó, A. Gragnani, E. H. van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences of the United States of America 100: 4040–4045.PubMedCentralPubMedGoogle Scholar
  179. Shade, A., H. Peter, S. D. Allison, D. L. Baho, M. Berga, H. Burgmann, D. H. Huber, S. Langenheder, J. T. Lennon, J. B. H. Martiny, K. L. Matulich, T. M. Schmidt & J. Handelsman, 2012. Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology 3: e417.Google Scholar
  180. Shurin, J. B., 2000. Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81: 3074–3086.Google Scholar
  181. Simberloff, D., 2006. Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecology Letters 9: 912–919.PubMedGoogle Scholar
  182. Simberloff, D., 2011. Charles S. Elton. In Simberloff, D. & M. Rejmánek (eds), Encyclopedia of Biological Invasions. University of California Press, Berkeley: 187–189.Google Scholar
  183. Simberloff, D., 2013. Invasive Species: What Everyone Needs to Know. Oxford University Press, New York.Google Scholar
  184. Simberloff, D. & J. R. S. Vitule, 2014. A call for an end to calls for the end of invasion biology. Oikos 123: 408–413.Google Scholar
  185. Simberloff, D., L. Souza, M. A. Nuñez, M. N. Barrios-Garcia & W. Bunn, 2012. The natives are restless, but not often and mostly when disturbed. Ecology 93: 598–607.PubMedGoogle Scholar
  186. Simberloff, D., J. L. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F. Curchamp, B. Galil, E. García-Bertou, M. Pascal, P. Pyšek, R. Sousa, E. Tabacchi & M. Vilà, 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology and Evolution 28: 58–66.PubMedGoogle Scholar
  187. Skjermo, J. & O. Vadstein, 1999. Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture 177: 333–343.Google Scholar
  188. Smol, J. P., 2008. Pollution of Lakes and Rivers: A Paleolimnological Perspective, 2nd ed. Oxford University Press, New York.Google Scholar
  189. Sorte, C. J., I. Ibáñez, D. M. Blumenthal, N. A. Molinari, L. P. Miller, E. D. Grosholz, J. M. Diez, C. M. D’Antonio, J. D. Olden, S. J. Jones & J. S. Dukes, 2013. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecology Letters 16: 261–270.PubMedGoogle Scholar
  190. Stohlgren, T. J., C. Jarnevich, G. W. Chong & P. H. Evangelista, 2006. Scale and plant invasions: a theory of biotic acceptance. Preslia 78(4): 05–426.Google Scholar
  191. Strayer, D. L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55: 152–174.Google Scholar
  192. Strayer, D. L., 2012. Eight questions about invasions and ecosystem functioning. Ecology Letters 15: 1199–1210.PubMedGoogle Scholar
  193. Strayer, D. L., M. L. Pace, N. F. Caraco, J. J. Cole & S. E. G. Findlay, 2008. Hydrology and grazing jointly control a large-river food web. Ecology 89: 12–18.PubMedGoogle Scholar
  194. Sukenik, A., O. Hadas, A. Kaplan & A. Quesada, 2012. Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes–physiological, regional, and global driving forces. Frontiers in Microbiology 3: e86.Google Scholar
  195. Taylor, C. M. & I. C. Duggan, 2012. Can biotic resistance be utilized to reduce establishment rates of non-indigenous species in constructed waters? Biological Invasions 14: 307–322.Google Scholar
  196. Tetzlaff, J. C., B. M. Roth, B. C. Weidel & J. F. Kitchell, 2011. Predation by native sunfishes (Centrarchidae) on the invasive crayfish Orconectes rusticus in four northern Wisconsin lakes. Ecology of Freshwater Fish 20: 133–143.Google Scholar
  197. Theel, H. J., E. D. Dibble & J. D. Madsen, 2008. Differential influence of a monotypic and diverse native aquatic plant bed on a macroinvertebrate assemblage; an experimental implication of exotic plant induced habitat. Hydrobiologia 600: 77–87.Google Scholar
  198. Thiébaut, G. & L. Martinez, 2015. An exotic macrophyte bed may facilitate the anchorage of exotic propagules during the first stage of invasion. Hydrobiologia 746: 183–196.Google Scholar
  199. Thomas, R., A. Kane, Environmental Law Institute & B. G. Bierwagen, 2008. Effects of climate change on aquatic invasive species and implications for management and research. U.S. Environmental Protection Agency Papers. Paper 51 [available on internet at http://www.digitalcommons.unl.edu/usepapapers/51].
  200. Thomaz, S. M., P. Carvalho, R. P. Mormul, F. A. Ferreira, M. J. Silveira & T. S. Michelan, 2009. Temporal trends and effects of diversity on occurrence of exotic macrophytes in a large reservoir. Acta Oecologica 35: 614–620.Google Scholar
  201. Thomaz, S. M., M. J. Silveira & T. S. Michelan, 2012. The colonization success of an exotic Poaceae is related to native macrophyte richness, wind disturbance and riparian vegetation. Aquatic Sciences 74: 809–815.Google Scholar
  202. Thomaz, S. M., R. P. Mormul & T. S. Michelan, 2014. Propagule pressure, invasibility of freshwater ecosystems by macrophytes and their ecological impacts: a review of tropical freshwater ecosystems. Hydrobiologia 295: 135–140.Google Scholar
  203. Trebitz, A. S. & D. L. Taylor, 2007. Exotic and invasive aquatic plants in great lakes coastal wetlands: distribution and relation to watershed land use and plant richness and cover. Journal of Great Lakes Research 33: 705–721.Google Scholar
  204. Valéry, L., H. Fritz & J. C. Lefeuvre, 2013. Another call for the end of invasion biology. Oikos 122: 1143–1146.Google Scholar
  205. van Kleunen, M., E. Weber & M. Fischer, 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13: 235–245.PubMedGoogle Scholar
  206. van Nes, E. H. & M. Scheffer, 2005. Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 86: 1797–1807.Google Scholar
  207. Vander Zanden, M. J., J. M. Casselman & J. B. Rasmussen, 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401: 464–467.Google Scholar
  208. Vitule, J. R. S., F. Skora & V. Abilhoa, 2012. Homogenization of freshwater faunas after the elimination of a natural barrier by a dam in Neotropics. Biodiversity and Distributions 18: 111–120.Google Scholar
  209. Vogel, S., 1994. Life in Moving Fluids, 2nd ed. Princeton University Press, Princeton, NJ.Google Scholar
  210. Wallace, R. L. & T. W. Snell, 2001. Rotifera. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Academic Press, San Diego: 195–254.Google Scholar
  211. Westbrooks, R., 2004. New approaches for early detection and rapid response to invasive plants in the United States. Weed Technology 18(5): 1468–1471.Google Scholar
  212. Westbrooks, R. & R. E. Eplee, 2011. Early detection and rapid response. In Simberloff, D. & M. Rejmanek (eds), Encyclopedia of Biological Invasions. University of California, Berkeley, CA: 169–177.Google Scholar
  213. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Academic Press, San Diego.Google Scholar
  214. Williamson, M., 1996. Biological Invasions. Chapman and Hall, London.Google Scholar
  215. Wisconsin Department of Natural Resources, 2013. Aquatic invasive species [available on internet at http://www.dnr.wi.gov/lakes/invasives].
  216. Witte, F., T. Goldschmidt, J. Wanink, M. Oijen, K. Goudswaard, E. Witte-Maas & N. Bouton, 1992. The destruction of an endemic species flock: quantitative data on the decline of the haplochromine cichlids of Lake Victoria. Environmental Biology of Fishes 34: 1–28.Google Scholar
  217. Xu, K. Y., W. H. Ye, H. L. Cao, X. Deng, Q. H. Yang & Y. Zhang, 2004. The role of diversity and functional traits of species in community invasibility. Botanical Bulletin of Academia Sinica 45: 149–157.Google Scholar
  218. Yamanishi, Y., Y. Kazuhiro, N. Fujimori & Y. Yusa, 2012. Predator-driven biotic resistance and propagule pressure regulate the invasive apple snail Pomacea canaliculata in Japan. Biological Invasions 14: 1343–1352.Google Scholar
  219. Yarrow, M., V. H. Marín, M. Finlayson, A. Tironi, L. E. Delgado & F. Fischer, 2009. The ecology of Egeria densa Planchon (Liliopsida: Alismatales): A wetland ecosystem engineer? Revista Chilena de Historia Natural 82: 299–313.Google Scholar
  220. Yelenik, S. G. & C. M. D’Antonio, 2013. Self-reinforcing impacts of plant invasions change over time. Nature 503: 517–520.PubMedGoogle Scholar
  221. Zaret, T. R. & R. T. Paine, 1973. Species introduction in a tropical lake: a newly introduced piscivore can produce population changes in a wide range of trophic levels. Science 182: 449–455.PubMedGoogle Scholar
  222. Zinsser, H., 1934. Rats, Lice and History. Little, Brown and Company, Boston.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • John E. Havel
    • 1
    Email author
  • Katya E. Kovalenko
    • 2
  • Sidinei Magela Thomaz
    • 3
  • Stefano Amalfitano
    • 4
  • Lee B. Kats
    • 5
  1. 1.Department of BiologyMissouri State UniversitySpringfieldUSA
  2. 2.Natural Resources Research InstituteUniversity of Minnesota DuluthDuluthUSA
  3. 3.State University of Maringá, Nupélia/DBI/PEAMaringáBrazil
  4. 4.Water Research Institute (IRSA-CNR)MonterotondoItaly
  5. 5.Natural Science DivisionPepperdine UniversityMalibuUSA

Personalised recommendations