Advertisement

Hydrobiologia

, Volume 759, Issue 1, pp 15–26 | Cite as

Light-dependent fluorescence in the coral Galaxea fascicularis

  • Or Ben-Zvi
  • Gal Eyal
  • Yossi Loya
COELENTERATE BIOLOGY

Abstract

Light in the sea is one of the major factors influencing corals, with changes in light being rapid along the depth gradient. Those changes can be a potential stress factor for coral-reef organisms and affect different aspects of the coral’s physiology, including its fluorescence. Fluorescence is a physical phenomenon, comprising the emission of light by a substance that has absorbed light with a different wavelength. Major hypotheses concerning the role of coral fluorescence include that of photoprotection and the facilitation of photosynthesis. We sought to further investigate some ecophysiological aspects of coral fluorescence. We focused on the effect of different light conditions on fluorescence of the coral Galaxea fascicularis and used photography, confocal microscopy, and spectral measurements to assess changes in its fluorescence. We show that fluorescence is significantly influenced by light and, therefore, by depth. Coral fluorescence increased with the increase in light intensity and when the spectrum of light was broader. Hence, we support the “sunscreen” hypothesis and conclude that fluorescence plays a role in the coral’s defense mechanism against harmful radiation. However, multiple fluorescent proteins, as found in different locations of the coral tissue, might suggest more than one functional role of fluorescence in the coral’s physiology.

Keywords

Fluorescence Mesophotic coral ecosystems (MCEs) Galaxea fascicularis GFP Coral Red Sea 

Notes

Acknowledgments

We would like to thank the staff of The Interuniversity Institute for Marine Sciences in Eilat (IUI) for making the facilities of the lab available to us. We are grateful to Nadav Shashar and Amit Lerner for their help with the spectral measurements, Maoz Fine for his help with the coral physiology tests, Ofri Mann for his help with the statistical analysis, Naomi Paz for the proofreading, and all of YL’s lab members for their support in the various tasks of this study. This research was partially funded by the Israel Science Foundation (ISF) grant No. 341/12 and USAID/MERC grant No. M32-037 to YL.

References

  1. Abràmoff, M. D., P. J. Magalhães & S. J. Ram, 2004. Image processing with image. Journal of Biophotonics international 11: 36–43.Google Scholar
  2. Alieva, N. O., K. A. Konzen, S. F. Field, E. A. Meleshkevitch, M. E. Hunt, V. Beltran-Ramirez, D. J. Miller, J. Wiedenmann, A. Salih & M. V. Matz, 2008. Diversity and evolution of coral fluorescent proteins. PLoS One 3: e2680.CrossRefPubMedCentralPubMedGoogle Scholar
  3. Anthony, K. R. N. & O. Hoegh Guldberg, 2003. Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Functional Ecology 17: 246–259.CrossRefGoogle Scholar
  4. Aronson, R. B. & W. F. Precht, 2001. White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460: 25–38.CrossRefGoogle Scholar
  5. Beer, S., M. Bjork & J. Beardall, 2014. Photosynthesis in the Marine Environment. Wiley, New York: 61–66.Google Scholar
  6. Bou-Abdallah, F., N. D. Chasteen & M. P. Lesser, 2006. Quenching of superoxide radicals by green fluorescent protein. Biochimica et Biophysica Acta 1760: 1690–1695.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bruno, J. F., E. R. Selig, K. S. Casey, C. A. Page, B. L. Willis, C. D. Harvell, H. Sweatman & A. M. Melendy, 2007. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biology 5: e124.CrossRefPubMedCentralPubMedGoogle Scholar
  8. D’Angelo, C. & J. Wiedenmann, 2014. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Current Opinion in Environmental Sustainability 7: 82–93.CrossRefGoogle Scholar
  9. D’Angelo, C., A. Denzel, A. Vogt, M. V. Matz, F. Oswald, A. Salih, G. U. Nienhaus & J. Wiedenmann, 2008. Blue light regulation of host pigment in reef-building corals. Marine Ecology Progress Series 364: 97–106.CrossRefGoogle Scholar
  10. D’Angelo, C., E. Smith, F. Oswald, J. Burt, D. Tchernov & J. Wiedenmann, 2012. Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs 31: 1045–1056.CrossRefGoogle Scholar
  11. Douglas, A. E., 2003. Coral bleaching—how and why? Marine Pollution Bulletin 46: 385–392.CrossRefPubMedGoogle Scholar
  12. Dove, S., O. Hoegh-Guldberg & S. Ranganathan, 2001. Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19: 197–204.CrossRefGoogle Scholar
  13. Dove, S. G., C. Lovell, M. Fine, J. Deckenback, O. Hoegh-Guldberg, R. Iglesias-Prieto & K. Anthony, 2008. Host pigments: potential facilitators of photosynthesis in coral symbioses. Plant, cell & environment 31: 1523–1533.CrossRefGoogle Scholar
  14. Edinger, E. N., J. Jompa, G. V. Limmon, W. Widjatmoko & M. J. Risk, 1998. Reef degradation and coral biodiversity in indonesia: Effects of land-based pollution, destructive fishing practices and changes over time. Marine Pollution Bulletin 36: 617–630.CrossRefGoogle Scholar
  15. Einbinder, S., T. Mass, E. Brokovich, Z. Dubinsky, J. Erez & D. Tchernov, 2009. Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Marine Ecology Progress Series 381: 167–174.CrossRefGoogle Scholar
  16. Field, S. F., M. Y. Bulina, I. V. Kelmanson, J. P. Bielawski & M. V. Matz, 2006. Adaptive evolution of multicolored fluorescent proteins in reef-building corals. Journal of Molecular Evolution 62: 332–339.CrossRefPubMedGoogle Scholar
  17. Fishelson, L., 1973. Ecology of coral reefs in the Gulf of Aqaba (Red Sea) influenced by pollution. Oecologia 12: 55–67.CrossRefGoogle Scholar
  18. Gleason, D. F., 1993. Differential effects of ultraviolet radiation on green and brown morphs of the Caribbean coral Porites astreoides. Limnology and Oceanography 38: 1452–1463.CrossRefGoogle Scholar
  19. Haddock, S. H. D., C. W. Dunn, P. R. Pugh & C. E. Schnitzler, 2005. Bioluminescent and red-fluorescent lures in a deep-sea Siphonophore. Science 309: 263.CrossRefPubMedGoogle Scholar
  20. Haddock, S. H. D., N. Mastroianni & L. M. Christianson, 2009. A photoactivatable green-fluorescent protein from the phylum Ctenophora. Proceedings of the Royal Society B:rspb20091774.Google Scholar
  21. Highsmith, R. C., R. L. Lueptow & S. C. Schonberg, 1983. Growth and bioerosion of three massive corals on the Belize barrier reef. Marine Ecology Progress Series 13: 261–271.CrossRefGoogle Scholar
  22. Hoegh-Guldberg, O., 1999. Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research 50: 839–866.CrossRefGoogle Scholar
  23. Hoegh-Guldberg, O., P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto, N. Muthiga, R. H. Bradbury, A. Dubi & M. E. Hatziolos, 2007. Coral reefs under rapid climate change and ocean acidification. Science 318: 1737–1742.CrossRefPubMedGoogle Scholar
  24. Hume, B., C. D’Angelo, J. Burt, A. C. Baker, B. Riegl & J. Wiedenmann, 2013. Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Marine Pollution Bulletin 72: 313–322.CrossRefPubMedGoogle Scholar
  25. Hume, B. C., C. D’Angelo, A. Cunnington, E. Smith & J. Wiedenmann, 2014. The corallivorous flatworm Amakusaplana acroporae: an invasive species threat to coral reefs? Coral Reefs 33: 267–272.CrossRefGoogle Scholar
  26. Huston, M., 1985. Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4: 19–25.CrossRefGoogle Scholar
  27. Jeffrey, S. & F. Haxo, 1968. Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. The Biological Bulletin 135: 149–165.CrossRefGoogle Scholar
  28. Jeffrey, S. W. H., 1975. New spectrophotometric equations for determining chlorophylls a1, b1, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.Google Scholar
  29. Jerlov, N. G., 1968. Optical oceanography, Vol. 5. Elsevier, New York.CrossRefGoogle Scholar
  30. Karasawa, S., T. Araki, M. Yamamoto-Hino & A. Miyawaki, 2003. A green-emitting fluorescent protein from galaxeidae coral and its monomeric version for use in fluorescent labeling. Journal of Biological Chemistry 278: 34167–34171.CrossRefPubMedGoogle Scholar
  31. Kawaguti, S., 1944. On the physiology of reef corals VI. Study on the pigments. Palao Tropical Biological Station Studies 2: 617–674.Google Scholar
  32. Krause, G. & E. Weis, 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annual review of plant biology 42: 313–349.CrossRefGoogle Scholar
  33. Kumagai, A., R. Ando, H. Miyatake, P. Greimel, T. Kobayashi, Y. Hirabayashi, T. Shimogori & A. Miyawaki, 2013. A bilirubin-inducible fluorescent protein from eel muscle. Cell 153: 1602–1611.CrossRefPubMedGoogle Scholar
  34. Lesser, M. P., C. H. Mazel, M. Y. Gorbunov & P. G. Falkowski, 2004. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305: 997–1000.CrossRefPubMedGoogle Scholar
  35. Lesser, M. P., M. Slattery & J. J. Leichter, 2009. Ecology of mesophotic coral reefs. Journal of Experimental Marine Biology and Ecology 375: 1–8.CrossRefGoogle Scholar
  36. Leutenegger, A., C. D’Angelo, M. V. Matz, A. Denzel, F. Oswald, A. Salih, G. U. Nienhaus & J. Wiedenmann, 2007. It’s cheap to be colorful. Federation of European Biochemical Societies Journal 274: 2496–2505.PubMedGoogle Scholar
  37. Loya, Y., K. Sakai, K. Yamazato, Y. Nakano, H. Sambali & R. van Woesik, 2001. Coral bleaching: the winners and the losers. Ecology Letters 4: 122–131.CrossRefGoogle Scholar
  38. Loya, Y., H. Lubinevsky, M. Rosenfeld & E. Kramarsky-Winter, 2004. Nutrient enrichment caused by in situ fish farms at Eilat, Red Sea is detrimental to coral reproduction. Marine Pollution Bulletin 49: 344–353.CrossRefPubMedGoogle Scholar
  39. Marubini, F., H. Barnett, C. Langdon & M. Atkinson, 2001. Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Marine Ecology Progress Series 220: 153–162.CrossRefGoogle Scholar
  40. Mass, T., S. Einbinder, E. Brokovich, N. Shashar, R. Vago, J. Erez & Z. Dubinsky, 2007. Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Marine Ecology Progress Series 334: 93–102.CrossRefGoogle Scholar
  41. Mazel, C. H., 1995. Spectral measurements of fluorescence emission in Caribbean cnidarians. Marine Ecology Progress Series 120: 185–191.CrossRefGoogle Scholar
  42. Mazel, C. H., M. P. Lesser, M. Y. Gorbunov, T. M. Barry, J. H. Farrell, K. D. Wyman & P. G. Falkowski, 2003. Green-fluorescent proteins in Caribbean corals. Limnology and Oceanography 48: 402–411.CrossRefGoogle Scholar
  43. Mazel, C. H., T. W. Cronin, R. L. Caldwell & N. J. Marshall, 2004. Fluorescent enhancement of signaling in a Mantis shrimp. Science 303: 51. CrossRefPubMedGoogle Scholar
  44. Michiels, N., N. Anthes, N. Hart, J. Herler, A. Meixner, F. Schleifenbaum, G. Schulte, U. Siebeck, D. Sprenger & M. Wucherer, 2008. Red fluorescence in reef fish: a novel signalling mechanism? BMC Ecology 8: 16.CrossRefPubMedCentralPubMedGoogle Scholar
  45. Muscatine, L. & E. Cernichiari, 1969. Assimilation of photosynthetic products of zooxanthellae by a reef coral. The Biological Bulletin 137: 506–523.CrossRefGoogle Scholar
  46. Nagelkerken, I., G. van der Velde, M. W. Gorissen, G. J. Meijer, T. Van’t Hof & C. den Hartog, 2000. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuarine, Coastal and Shelf Science 51: 31–44. CrossRefGoogle Scholar
  47. Nir, O., D. F. Gruber, S. Einbinder, S. Kark & D. Tchernov, 2011. Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs 30: 1089–1100.CrossRefGoogle Scholar
  48. Nishizawa, K., Y. Kita, M. Kitayama & M. Ishimoto, 2006. A red fluorescent protein, DsRed2, as a visual reporter for transient expression and stable transformation in soybean. Plant Cell Reports 25: 1355–1361.CrossRefPubMedGoogle Scholar
  49. Oswald, F., F. Schmitt, A. Leutenegger, S. Ivanchenko, C. D’Angelo, A. Salih, S. Maslakova, M. Bulina, R. Schirmbeck & G. Nienhaus, 2007. Contributions of host and symbiont pigments to the coloration of reef corals. Federation of European Biochemical Societies Journal 274: 1102–1122.PubMedGoogle Scholar
  50. Pratchett, M. S., P. Munday, S. K. Wilson, N. A. Graham, J. E. Cinner, D. R. Bellwood, G. P. Jones, N. V. Polunin & T. McClanahan, 2008. Effects of climate-induced coral bleaching on coral-reef fishes. Ecological and economic consequences Oceanography and Marine Biology: An Annual Review 46: 251–296.Google Scholar
  51. RDCT, 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  52. Rosenberg, E. & Y. Loya, 2004. Coral health and disease. Springer, Berlin.CrossRefGoogle Scholar
  53. Roth, M. S. & D. D. Deheyn, 2013. Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Scientific reports 3.Google Scholar
  54. Salih, A., O. Hoegh-Guldberg & G. Cox, Photoprotection of symbiotic dinoflagellates by fluorescent pigments in reef corals. In: Proceedings, Australian Coral Reef Society, Heron Island 50 year commemorative meeting 1997. University of Queensland Press, pp 217–230.Google Scholar
  55. Salih, A., A. Larkum, G. Cox, M. Kühl & O. Hoegh-Guldberg, 2000. Fluorescent pigments in corals are photoprotective. Nature 408: 850–853.CrossRefPubMedGoogle Scholar
  56. Salih, A., J. Wiedenmann, M. Matz, A. W. Larkum & G. Cox, Photoinduced activation of GFP-like proteins in tissues of reef corals. In: Biomedical Optics 2006, 2006. International Society for Optics and Photonics, p 60980B-60980B-12.Google Scholar
  57. Salvat, B., 1992. Coral reefs—a challenging ecosystem for human societies. Global Environmental Change 2: 12–18.CrossRefGoogle Scholar
  58. Schlichter, D. & H. Fricke, 1991. Mechanisms of amplification of photosynthetically active radiation in the symbiotic deep-water coral Leptoseris fragilis. Coelenterate Biology: Recent Research on Cnidaria and Ctenophora. Springer, The Nether-lands: 389–394.CrossRefGoogle Scholar
  59. Schlichter, D., U. Meier & H. Fricke, 1994. Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores. Oecologia 99: 124–131.CrossRefGoogle Scholar
  60. Schlichter, D., W. Weber & H. Fricke, 1985. A chromatophore system in the hermatypic, deep-water coral Leptoseris fragilis (Anthozoa: Hexacorallia). Marine Biology 89: 143–147.CrossRefGoogle Scholar
  61. Sheppard, C., D. J. Dixon, M. Gourlay, A. Sheppard & R. Payet, 2005. Coral mortality increases wave energy reaching shores protected by reef flats: examples from the Seychelles. Estuarine, Coastal and Shelf Science 64: 223–234.CrossRefGoogle Scholar
  62. Shimomura, O., F. H. Johnson & Y. Saiga, 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Journal of Cellular and Comparative Physiology 59: 223–239.CrossRefPubMedGoogle Scholar
  63. Smith-Keune, C. & S. Dove, 2008. Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral. Marine Biotechnology 10: 166–180.CrossRefPubMedGoogle Scholar
  64. Smith, E. G., C. D’Angelo, A. Salih & J. Wiedenmann, 2013. Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae. Coral Reefs:1-12.Google Scholar
  65. Sparks, J. S., R. C. Schelly, W. L. Smith, M. P. Davis, D. Tchernov, V. A. Pieribone & D. F. Gruber, 2014. The covert World of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon. PLoS One 9: e83259.CrossRefPubMedCentralPubMedGoogle Scholar
  66. Stimson, J. & R. A. Kinzie III, 1991. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. Journal of Experimental Marine Biology and Ecology 153: 63–74.CrossRefGoogle Scholar
  67. Stokes, G. G., 1852. On the change of refrangibility of light. Philosophical Transactions of the Royal Society of London 142: 463–562.CrossRefGoogle Scholar
  68. Trench, R. K., 1993. Microalgal-invertebrate symbioses - a review. Endocytobiosis and Cell Research 9: 135–175.Google Scholar
  69. Vermeij, M., L. Delvoye, G. Nieuwland & R. Bak, 2002a. Patterns in fluorescence over a Caribbean reef slope: the coral genus Madracis. Photosynthetica 40: 423–429.CrossRefGoogle Scholar
  70. Vermeij, M. J. A., L. Delvoye, G. Nieuwland & R. P. M. Bak, 2002b. Patterns in fluorescence over a Caribbean Reef slope: the coral genus Madracis. Photosynthetica 40: 423–429.CrossRefGoogle Scholar
  71. Vogt, A., C. D’Angelo, F. Oswald, A. Denzel, C. H. Mazel, M. V. Matz, S. Ivanchenko, G. U. Nienhaus & J. Wiedenmann, 2008. A green fluorescent protein with photoswitchable emission from the deep sea. PLoS One 3: e3766.CrossRefPubMedCentralPubMedGoogle Scholar
  72. Warner, M. E., M. P. Lesser & P. J. Ralph, 2010. Chlorophyll Fluorescence in Reef Building Corals. In Suggett, D. J., O. Prášil & M. A. Borowitzka (eds), Chlorophyll a fluorescence in aquatic sciences: methods and applications. developments in applied phycology, Vol. 4. Springer, The Netherlands: 209–222.CrossRefGoogle Scholar
  73. Wenck, A., C. Pugieux, M. Turner, M. Dunn, C. Stacy, A. Tiozzo, E. Dunder, E. van Grinsven, R. Khan, M. Sigareva, W. C. Wang, J. Reed, P. Drayton, D. Oliver, H. Trafford, G. Legris, H. Rushton, S. Tayab, K. Launis, Y. F. Chang, D. F. Chen & L. Melchers, 2003. Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Reports 22: 244–251.CrossRefPubMedGoogle Scholar
  74. Wiedenmann, J., C. D’Angelo, E. G. Smith, A. N. Hunt, F.-E. Legiret, A. D. Postle & E. P. Achterberg, 2013. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Climate Change 3: 160–164.CrossRefGoogle Scholar
  75. Willis, B. L., C. A. Page & E. A. Dinsdale, 2004. Coral disease on the great barrier reef coral health and disease. Springer, UK: 69–104.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of ZoologyTel Aviv UniversityTel AvivIsrael
  2. 2.The Interuniversity Institute for Marine Sciences in EilatEilatIsrael

Personalised recommendations