, Volume 744, Issue 1, pp 49–61 | Cite as

The importance of environmental variables for submerged macrophyte community assemblage and coverage in shallow lakes: differences between northern and southern Europe

  • Torben L. LauridsenEmail author
  • Erik Jeppesen
  • Steven A. J. Declerck
  • Luc De Meester
  • Jose M. Conde-Porcuna
  • Wouter Rommens
  • Sandra Brucet
Primary Research Paper


Much information is available on community composition and abundance of submerged macrophytes in North temperate lakes, including their response to variation in environmental variables. Less is known about macrophytes in other climate regions. We studied 98 shallow lakes distributed in three different European latitudinal regions. The lakes were selected along mutually independent gradients of macrophyte coverage and total phosphorus and were sampled monthly from May to October for water chemistry and physical variables. We tested for changes in the impact of selected environmental variables on the macrophyte assemblage, coverage and richness in the three regions. Coverage was measured along transects during July/August and June in the northern/central and southern European lakes, respectively. Correspondence Discriminant Analysis was used to detect for differences in macrophyte composition among different regions, and univariate regression trees were used to detect relationships between environmental variables and macrophyte coverage and richness. In the northern lakes, the coverage was mainly related to chlorophyll a followed by pH, and richness was related to Secchi depth and chlorophyll a. In the southern lakes, pH was the key environmental variable for both coverage and richness. North–south differences may be of relevance for determining management strategies related to global climate change.


Aquatic plants Richness Freshwater Restoration Climate 



We thank Jon Svendsen, Kim Pedersen, Lissa Skov Hansen, Karina Jensen, Jane Stougaard-Pedersen, Birte Laustsen, Stig Bech Nielsen, Jochen Vanderkerkhove, J. M. Medina-Sanchez, F. Bullejos, P. Sanches-Castillo and J. A. Delgado for field and laboratory assistance. We thank Anne Mette Poulsen and Tinna Christensen for valuable editorial assistance and lake owners and local authorities for lake access. The survey was carried out within the framework of the EU project BIOMAN (Biodiversity and Human Impact in European Shallow Lakes, EVK2-CT-1999-00046). TLL, EJ and SB were supported by the EU project REFRESH (Adaptive strategies to mitigate the impacts of climate change on European freshwater ecosystems, Env. 2009., TLL and EJ also by CLEAR (a Villum Kann Rasmussen Foundation, Centre of Excellence project), EJ by CIRCE and CRES, and SB by the Marie Curie Intra European Fellowship no. 330249 (CLIMBING).


  1. Alahuhta, J., A. Kanninen & K.-M. Vuori, 2012. Response of macrophyte communities and status metrics to natural gradients and land use in boreal lakes. Aquatic Botany 103: 106–114.CrossRefGoogle Scholar
  2. Bachmann, R. W., C. A. Horsburgh, M. V. Hoyer, L. K. Mataraza & D. E. Canfield, 2002. Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470: 219–234.CrossRefGoogle Scholar
  3. Bakker, E. S., E. Van Donk, S. A. J. Declerck, N. R. Helmsing, B. Hidding & B. A. Nolet, 2010. Effect of macrophyte community composition and nutrient enrichment on plant biomass and algal blooms. Basic and Applied Ecology 11: 432–439.CrossRefGoogle Scholar
  4. Beklioglu, M. & C. O. Tan, 2008. Restoration of a shallow Mediterranean lake by biomanipulation complicated by drought. Archiv für Hydrobiologie 171: 105–118.CrossRefGoogle Scholar
  5. Beklioglu, M., G. Altinayar & C. O. Tan, 2006. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Archiv für Hydrobiologie 166: 535–556.CrossRefGoogle Scholar
  6. Boström, C., S. Baden, A.-C. Boeckelmann, K. Dromph, S. Frederiksen, C. Gustavsson, D. Krause-Jensen, T. Möller, S. L. Nielsen, B. Olesen, J. Olsen, L. Pihl & E. Rinde, 2014. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 24: 410–434.CrossRefGoogle Scholar
  7. Breiman, L., J. H. Friedman, R. A. Ohlsen & C. J. Stone, 1984. Classification and Regression Trees. Wadsworth International Group, Belmont.Google Scholar
  8. Brucet, S., D. Boix, X. D. Quintana, E. Jensen, L. W. Nathansen, C. Trochine, M. Meerhoff, S. Gascon & E. Jeppesen, 2010. Factors influencing zooplankton size structure at contrasting temperatures in shallow lakes: implications for effects of climate change. Limnology and Oceanography 55: 1697–1711.CrossRefGoogle Scholar
  9. Brucet, S., S. Pedron, T. Mehner, T. L. Lauridsen, C. Argillier, I. J. Winfield, P. Volta, M. Emmrich, T. Hesthaugen, K. Holmgren, L. Benejam, F. Kelly, T. Krause, A. Palm, M. Rask & E. Jeppesen, 2013. Fish diversity in European lakes: geographical factors dominate over anthropogenic pressures. Freshwater Biology 58: 1779–1793.CrossRefGoogle Scholar
  10. Bucak, T., E. Saraoglu, E. E. Levi, Ü. N. Tavşanoglu, A. İ. Çakıroglu, E. Jeppesen & M. Beklioglu, 2012. The role of water level for macrophyte growth and trophic interactions in eutrophic Mediterranean shallow lakes: a mesocosm experiment with and without fish. Freshwater Biology 57: 1631–1642.CrossRefGoogle Scholar
  11. Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.CrossRefGoogle Scholar
  12. Capers, R. S., R. Selsky, G. J. Bugbee & J. C. White, 2009. Species richness of both native and invasive aquatic plants influenced by environmental conditions and human activity. Botany 87: 306–314.CrossRefGoogle Scholar
  13. Casagrande, C., C. F. Boudouresque & P. Francour, 2005. Abundance, population structure and production of Hydrobia ventrosa (Gastropoda: Prosobranchia) in a Mediterranean brackish lagoon, Lake Ichkeul, Tunisia. Archiv für Hydrobiologie 164: 411–428.CrossRefGoogle Scholar
  14. Chessel, D. & J. Thioulouse, 1996. L’analysc discriminante des correspondances. Documentation Themalique ADE-4, Vol. 5, Section 6. Universite Claude Bernard - Lyon 1, Lyon.Google Scholar
  15. Crawley, M. J., 2002. Statistical computing. An introduction to data analysis using S-Plus. Wiley, Chichester.Google Scholar
  16. Crow, G. E., 1993. Species-diversity in aquatic angiosperms – latitudinal patterns. Aquatic Botany 44: 229–258.CrossRefGoogle Scholar
  17. De Meester, L., S. Declerck, J. Janse, P. J. T. M. Van Puijenbroek, R. Portielje, E. Lammens, E. Jeppesen, T. Lauridsen, K. Schwenk, K. Muylaert, K. Van der Gucht, W. Vyverman, G. Zwart, E. Van Hannen, J. M. Conde-Porcuna, J. Vandekerkhove & L. Brendonck, 2006. Chapter 8: Biodiversity in European Shallow Lakes: A Multilevel – Multifactorial Field Study. Ecological Studies. Springer Verlag, New York: 149–167.Google Scholar
  18. De’ath, G., 2007. Boosted trees for ecological modeling and prediction. Ecology 88: 243–251.PubMedCrossRefGoogle Scholar
  19. De’ath, G. & K. E. Fabricius, 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81: 3178–3192.CrossRefGoogle Scholar
  20. Declerck, S., J. Vandekerkhove, L. Johansson, K. Muylaert, J. M. Conde-Porcuna, K. Van Der Gucht, C. Perez-Martínez, T. L. Lauridsen, K. Schwenk, G. Zwart, W. Rommens, J. López-Ramos, E. Jeppesen, W. Vyverman, L. Brendonck & L. De Meester, 2005. Multigroup biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915.CrossRefGoogle Scholar
  21. Declerck, S., M. Vanderstukken, A. Pals, K. Muylaert & L. de Meester, 2007. Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88: 2199–2210.PubMedCrossRefGoogle Scholar
  22. Declerck, S. A. J., E. S. Bakker, B. van Lith, A. Kersbergen & E. van Donk, 2011. Effects of nutrient additions and macrophyte composition on invertebrate community assembly and diversity in experimental ponds. Basic and Applied Ecology 12: 466–475.CrossRefGoogle Scholar
  23. Diehl, S. & R. Kornijów, 1998. Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen. The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies 131. Springer Verlag, New York: 24–46.Google Scholar
  24. García, L. V., T. Maranón, A. Moreno & L. Clemente, 1993. Above ground biomass and species richness in a Mediterranean salt marsh. Journal of Vegetation Science 4: 417–424.CrossRefGoogle Scholar
  25. Griffith, D., 2006. Pattern and process in the ecological biogeography of European freshwater fish. Journal of Animal Ecology 75: 734–751.CrossRefGoogle Scholar
  26. Heino, J. & H. Toivonen, 2008. Aquatic plant diversity at high latitudes: patterns of richness and rarity in Finnish freshwater macrophytes. Boreal Environment Research 13: 1–14.Google Scholar
  27. Hillebrand, H., 2004. On the generality of the latitudinal diversity gradient. The American Naturalist 163: 192–211.PubMedCrossRefGoogle Scholar
  28. Hrivnák, R., H. Ot’ahel’ová, J. Kochjarová & P. Pal’ove-Balang, 2013. Effect of environmental conditions on species composition of macrophytes – study from two distinct biogeographical regions of Central Europe. Knowledge and Management of Aquatic Ecosystems 411: 09.CrossRefGoogle Scholar
  29. James, C., J. Fisher, V. Russell, S. Collings & B. Moss, 2005. Nitrate availability and hydrophyte species richness in shallow lakes. Freshwater Biology 50: 1049–1063.CrossRefGoogle Scholar
  30. Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. R. Perrow, 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen. The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies 131. Springer Verlag, New York: 91–114.Google Scholar
  31. Jeppesen, E., M. Søndergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007. Shallow lake restoration by nutrient loading reduction – some recent findings and challenges ahead. Hydrobiologia 584: 239–252.CrossRefGoogle Scholar
  32. Jeppesen, E., M. Meerhoff, K. Holmgren, I. González-Bergonzoni, F. Teixeira-de Mello, S. A. J. Declerck, L. De Meester, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. M. Conde-Porcuna, N. Mazzeo, C. Iglesias, M. Reizenstein, H. J. Malmquist, Z. W. Liu, D. Balayla & X. Lazzaro, 2010. Impacts of climate warming on lake fish community structure and potential ecosystem effects. Hydrobiologia 646: 73–90.CrossRefGoogle Scholar
  33. Jespersen, A.-M. & K. Christoffersen, 1987. Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109: 445–454.Google Scholar
  34. Kanninen, A., S. Hellsten & H. Hämäläinen, 2013. Comparing stressor-specific indices and general measures of taxonomic composition for assessing the status of boreal lacustrine macrophyte communities. Ecological Indicators 27: 29–43.CrossRefGoogle Scholar
  35. Kolada, A., 2010. The use of aquatic vegetation in the lake assessment: testing the sensitivity of macrophyte metrics to anthropogenic pressures and water quality. Hydrobiologia 656: 133–147.CrossRefGoogle Scholar
  36. Koroleff, F., 1970. Determination of total phosphorus in natural waters by mean of persulphate oxidation. Interlab Report no. 3 Cons. int. Explor. Mer.Google Scholar
  37. Kosten, S., E. Jeppesen, V. L. Huszar, N. Mazzeo, E. H. Van Nes, E. T. Peeters & M. Scheffer, 2011. Ambiguous climate impacts on competition between submerged macrophytes and phytoplankton in shallow lakes. Freshwater Biology 56: 1540–1553.CrossRefGoogle Scholar
  38. Larcher, W., 1995. Physiological Plant Ecology. Springer, Berlin.CrossRefGoogle Scholar
  39. Lauridsen, T. L., P. Hald-Møller & H. Sandsten, 2003. The restoration of a shallow lake by introducing Potamogeton spp.: the impact of waterfowl grazing. Lakes & Reservoirs: Research and Management 8: 177–187.CrossRefGoogle Scholar
  40. Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam.Google Scholar
  41. Lenoir, J., J.-C. Gégout, A. Guisan, P. Vittoz, T. Wohlgemuth, N. E. Zimmermann, S. Dullinger, H. Pauli, W. Willner, J. A. Grytnes, R. Virtanen & J.-C. Svenning, 2010. Cross scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges. PLoS ONE 5: e15734.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Meerhoff, M., J. M. Clemente, F. Teixeira-de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.CrossRefGoogle Scholar
  43. Meerhoff, M., F. Teixeira-de Mello, C. Kruk, C. Alonso, I. González-Bergonzoni, J. Pablo Pacheco, G. Lacerot, M. Arim, M. Beklioğlu, S. Brucet, G. Goyenola, C. Iglesias, N. Mazzeo, S. Kosten & E. Jeppesen, 2012. Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research 46: 259–350.CrossRefGoogle Scholar
  44. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–377.CrossRefGoogle Scholar
  45. Moss, B., D. Stephen, D. M. Balayla, E. Becares, S. E. Collings, C. Fernandez-Alaez, M. Fernandez-Alaez, C. Ferriol, P. Garcia, J. Goma, M. Gyllström, L. A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, V. Russell, A. Stahl-Delbanco, M. Svensson, K. Vakkilainen, M. Valentin, W. J. Van de Bund, E. Van Donk, E. Vicente & E. G. Villena, 2004. Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biology 49: 1633–1649.CrossRefGoogle Scholar
  46. Murphy, J. & J. R. Riley, 1972. A modified single solution method for the determination of phosphate in natural waters. Analytical Chemistry Acta 27: 21–26.Google Scholar
  47. Penning, W. E., M. Mjelde, B. Dudley, S. Hellsten, J. Hanganu, A. Kolada, M. Van den Berg, S. Poikane, G. Phillips, N. Willby & F. Ecke, 2008. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquatic Ecology 42: 237–251.CrossRefGoogle Scholar
  48. Perriere, G., J. R. Lobry & J. Thioulouse, 1996. Correspondence discriminant analysis: a multivariate method for comparing classes of protein and nucleic acid sequences. CABIOS 12: 519–524.PubMedGoogle Scholar
  49. Quintana, X. D., D. Boix, A. Badosa, S. Brucet, J. Compte, S. Gascón, R. López-Flores, J. Sala & R. Moreno-Amich, 2006. Community structure in temporary and permanent shallow lentic ecosystems: size-based vs. taxon-based approaches. Limnetica 25: 303–320.Google Scholar
  50. Robin, J., A. Wezel, G. Bornette, F. Arthaud, S. Angélibert, V. Rosset & B. Oertli, 2014. Biodiversity in eutrophicated shallow lakes: determination of tipping points and tools for monitoring. Hydrobiologia 723: 63–75.CrossRefGoogle Scholar
  51. Rodríguez, C. F., E. Bécares, M. Fernández-Aláez & C. Fernández-Aláez, 2005. Loss of diversity and degradation of wetlands as a result of introducing exotic crayfish. Biological Invasions 7: 75–85.CrossRefGoogle Scholar
  52. Rørslett, B., 1991. Principal determinants of aquatic macrophyte richness in northern European lakes. Aquatic Botany 39: 173–193.CrossRefGoogle Scholar
  53. Sagrario, M. A. G., E. Jeppesen, J. Goma, M. Søndergaard, J. P. Jensen, T. L. Lauridsen & F. Landkildehus, 2005. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshwater Biology 50: 27–41.CrossRefGoogle Scholar
  54. Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton and macrophytes in freshwaters and estuaries. Aquatic Botany 41: 137–175.CrossRefGoogle Scholar
  55. Sand-Jensen, K., T. Riis, O. Vestergaard & S. E. Larsen, 2000. Macrophyte decline in Danish lakes and streams over past 100 years. Journal of Ecology 88: 1030–1040.CrossRefGoogle Scholar
  56. Sass, L. L., M. A. Bozek, J. A. Hauxwell, K. Wagner & S. Wright, 2010. Response of aquatic macrophytes to human land use pertubations in the watersheds of Wisconsin lakes, USA. Aquatic Botany 93: 1–8.CrossRefGoogle Scholar
  57. Scheffer, M., M. R. Redelijkheid & F. Noppert, 1992. Distribution and dynamics of submerged vegetation in a chain of shallow lakes. Aquatic Botany 42: 199–216.CrossRefGoogle Scholar
  58. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.CrossRefGoogle Scholar
  59. Søndergaard, M., L. S. Johansson, T. L. Lauridsen, T. B. Jørgensen, L. Liboriussen & E. Jeppesen, 2010. Submerged macrophytes as indicators of ecological quality of lakes. Freshwater Biology 55: 893–908.CrossRefGoogle Scholar
  60. Steinhardt, T. & U. Selig, 2007. Spatial distribution patterns and relationship between recent vegetation and diaspore bank of a brackish coastal lagoon on the southern Baltic Sea. Estuarine, Coastal and Shelf Science 74: 205–214.CrossRefGoogle Scholar
  61. Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry – An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley, New York: 171–227.Google Scholar
  62. Teixeira-de Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.CrossRefGoogle Scholar
  63. Tóth, L. G., S. Poikane, W. E. Penning, G. Free, H. Mäemets, A. Kolada & J. Hanganu, 2008. First step in the Central. Baltic intercalibration exercise on lake macrophytes: where do we start? Aquatic Ecology 42: 265–275.CrossRefGoogle Scholar
  64. Van den Berg, M., M. Scheffer, E. Van Nes & H. Coops, 1999. Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 408(409): 335–342.CrossRefGoogle Scholar
  65. Vestergaard, O. & K. Sand-Jensen, 2000a. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency and lake area. Canadian Journal of Fisheries and Aquatic Sciences 57: 2022–2031.CrossRefGoogle Scholar
  66. Vestergaard, O. & K. Sand-Jensen, 2000b. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquatic Botany 67: 85–107.CrossRefGoogle Scholar
  67. Wollheim, W. M. & J. R. Lovvorn, 1996. Effects of macrophyte growth forms on invertebrate communities in saline lakes of the Wyoming High Plains. Hydrobiologia 323: 83–96.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Torben L. Lauridsen
    • 1
    • 2
    • 6
    Email author
  • Erik Jeppesen
    • 1
    • 2
    • 6
  • Steven A. J. Declerck
    • 3
    • 4
  • Luc De Meester
    • 4
  • Jose M. Conde-Porcuna
    • 5
  • Wouter Rommens
    • 4
  • Sandra Brucet
    • 1
    • 2
    • 7
    • 8
  1. 1.Department of BioscienceAarhus UniversitySilkeborgDenmark
  2. 2.Arctic Research CentreAarhus CDenmark
  3. 3.Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  4. 4.Laboratory of Aquatic Ecology, Evolution and ConservationKU Leuven, University of LeuvenLeuvenBelgium
  5. 5.Institute of Water ResearchUniversity of GranadaGranadaSpain
  6. 6.Sino-Danish Centre for Education and Research (SDC)BeijingPeople’s Republic of China
  7. 7.Department of Environmental SciencesUniversity of VicVicSpain
  8. 8.Institute for Environment and SustainabilityEuropean Commission Joint Research CentreIspraItaly

Personalised recommendations