, Volume 752, Issue 1, pp 21–31 | Cite as

Diel patterns of total suspended solids, turbidity, and water transparency in a highly turbid, shallow lake (Laguna Chascomús, Argentina)

  • Leonardo LagomarsinoEmail author
  • Nadia Diovisalvi
  • José Bustingorry
  • Roberto Escaray
  • Horacio E. Zagarese


The effects of external physical forcing variables (solar radiation and winds) on short-term dynamics of total suspended solids (TSS), Chlorophyll-a (Chl-a), turbidity levels, and water transparency were studied during 15 days in a highly turbid, shallow lake (Laguna Chascomús, Argentina). Water samples were taken three times per day (8, 14 and 20 h.). Solar radiation and wind velocity showed a repeatedly bell-shaped diurnal pattern, with significant higher values during morning and afternoon, respectively. TSS and turbidity displayed a general decreasing trend during the sampling period, while water transparency showed the opposite trend. Also Chl-a displayed a decreasing trend and was closely correlated to TSS levels. We assayed a first-order kinetics model to detrend the series, obtaining the rate of change during the night, morning, and afternoon. We observed higher values on afternoon compared to morning for TSS, Chl-a, and turbidity levels and the opposite pattern for water transparency. We conclude that this pattern may result from a combination of biological activity, as it took place after a period of intense photosynthetic activity, together with resuspension by winds during the afternoon, (windiest time of the day).


Shallow turbid lake Physical forcing Total suspended solids Turbidity Water transparency 



We thank Ana Torremorell, Paulina Fermani, Fernando Unrein, Maria Llames, and Gonzalo Pérez for assistance in field and laboratory, and Gladys Salcedo Echeverry for statistical assistance. This work was supported by The Argentine network for the assessment and monitoring of Pampean shallow lakes (PAMPA2), by Consejo Nacional de Investigaciones Científicas y Técnicas, PIP-01301 and by Agencia Nacional de Promoción Científica y Tecnológica, PICT 2005-25325.


  1. Adrian, R., C. Reilly & H. Zagarese, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.CrossRefPubMedCentralPubMedGoogle Scholar
  2. APHA, 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed. American Public Health Association, Washington DC.Google Scholar
  3. Bayley, S. E., I. F. Creed, G. Z. Sass & A. S. Wong, 2007. Frequent regime shifts in trophic states in shallow lakes on the Boreal Plain: alternative ‘‘unstable’’ states? Journal Limnology and Oceanography 52: 2002–2012.CrossRefGoogle Scholar
  4. Beklioglu, M., G. Altinaya & C. O. Tan, 2006. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Archiv für Hydrobiologie 166: 535–556.CrossRefGoogle Scholar
  5. Conzonno, V. H., 1991. Determination of seston alkalinity in natural waters. Hydrobiologia 222: 85–87.CrossRefGoogle Scholar
  6. Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia 506–509: 23–27.CrossRefGoogle Scholar
  7. Cózar, A., J. A. Gálvez, V. Hull, C. M. García & S. A. Loiselle, 2005. Sediment resuspension by wind in a shallow lake of Esteros del Iberá (Argentina): a model based on turbidimetry. Ecological Modelling 186: 63–76.CrossRefGoogle Scholar
  8. Dangavs, N. V., A. M. Blasi & D. O. Merlo, 1996. Descripción sistemática de los parámetros morfométricos considerados en las lagunas pampásicas. Limnobios 1: 35–39.Google Scholar
  9. Genkai-Kato, M. & S. R. Carpenter, 2005. Eutrophication due to phosphorus recycling in relation to lake morphometry, temperature, and macrophytes. Ecology 86: 210–219.CrossRefGoogle Scholar
  10. Havens, K. E., K. R. Jin, N. Iricanin & R. T. James, 2007. Phosphorus dynamics at multiple time scales in the pelagic zone of a large shallow lake in Florida, USA. Hydrobiologia 581: 25–42.CrossRefGoogle Scholar
  11. Hellström, T., 1991. The effect of resuspension on algal production in a shallow lake. Hydrobiologia 213: 183–190.CrossRefGoogle Scholar
  12. Hessen, D. O., 2006. Determinants of seston C:P-ratio in lakes. Freshwater Biology 51: 1560–1569.CrossRefGoogle Scholar
  13. Iriondo, M. H. & E. C. Drago, 2004. The headwater hydrographic characteristics of large plains: the Pampa case. Ecohydrology and Hydrobiology 4: 7–16.Google Scholar
  14. James, W. F., E. P. Best & J. W. Barko, 2004. Sediment resuspension and light attenuation in Peoria Lake: can macrophytes improve water quality in this shallow system? Hydrobiologia 515: 193–201.CrossRefGoogle Scholar
  15. Janse, J. H., 1997. A model of nutrient dynamics in shallow lakes in relation to multiple stable states. Hydrobiologia 342(343): 1–8.Google Scholar
  16. Kristensen, P., M. Søndergaard & E. Jeppesen, 1992. Resuspension in a shallow hypertrophic lake. Hydrobiologia 228: 101–109.CrossRefGoogle Scholar
  17. Lagomarsino, L., G. Pérez, R. Escaray, J. Bustingorry & H. Zagarese, 2011. Weather variables as drivers of seasonal phosphorus dynamics in a shallow hypertrophic lake (Laguna Chascomús, Argentina). Fundamental and Applied Limnology 178: 191–201.CrossRefGoogle Scholar
  18. Laprida, C., M. J. Orgeira & N. García Chapori, 2009. El registro de la pequeña edad de hielo en lagunas pampeanas. Revista de la Asociación Geológica Argentina 65: 603–611.Google Scholar
  19. Lopretto, E. & G. Tell, 1995. Ecosistemas de aguas continentales. Metodologías para su uso. Tomo I. Ediciones Sur, La Plata.Google Scholar
  20. Luettich, R. A., D. R. Harleman & L. Somlyody, 1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnology and Oceanography 35: 1050–1067.CrossRefGoogle Scholar
  21. Llames, M. E., L. Lagomarsino, N. Diovisalvi, P. Fermani, A. M. Torremorell, G. Pérez, F. Unrein, J. Bustingorry, R. Escaray, M. Ferraro & H. E. Zagarese, 2009. The effects of light availability in shallow, turbid waters: a mesocosm study. Journal of Plankton Research 31: 1517–1529.CrossRefGoogle Scholar
  22. Miretzky, P., V. Conzonno & A. Fernandez Cirelli, 2000. Hydrochemistry of pampasic ponds in the lower stream bed of Salado River drainage basin, Argentina. Environmental Geology 39: 951–956.CrossRefGoogle Scholar
  23. Murphy, T. P., K. J. Hall & I. Yesaki, 1983. Coprecipitation of phosphate with calcite in a naturally eutrophic lake. Limnology and Oceanography 28: 58–69.Google Scholar
  24. Niemistö, J., H. Holmroos, Z. Pekcan-Hekim & J. Horppila, 2008. Interactions between sediment resuspension and sediment quality decrease the TN:TP ratio in a shallow lake. Limnology and Oceanography 53: 2407–2415.CrossRefGoogle Scholar
  25. Nõges, P., R. Adrian, O. Anneville, L. Arvola, T. Blenckner, D. G. George, T. Jankowski, M. Järvinen, S. C. Maberly, J. Padisák, D. Straile, K. Teubner & G. Weyhenmeyer, 2010. The impact of variations in the climate on seasonal dynamics of phytoplankton. In George, D. G. (ed.), The Impact of Climate Change on European Lakes, Aquatic Ecology Series 4. Springer, New York: 253–274.CrossRefGoogle Scholar
  26. Nõges, T., P. Nõges & R. Laugaste, 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506: 257–263.CrossRefGoogle Scholar
  27. Pannard, A., M. Bormans & Y. Lagadeuc, 2007. Short-term variability in physical forcing in temperate reservoirs: effects on phytoplankton dynamics and sedimentary fluxes. Freshwater Biology 52: 12–27.CrossRefGoogle Scholar
  28. Pérez, G., M. Llames, L. Lagomarsino & H. Zagarese, 2011. Seasonal variability of optical properties in a highly turbid lake (Laguna Chascomús Argentina). Photochemistry and Photobiology 87: 659–670.CrossRefPubMedGoogle Scholar
  29. Qin, B. Q., W. P. Hu, G. Gao, L. Luo & J. Zhang, 2004. Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu, China. Chinese Science Bulletin 49: 54–64.CrossRefGoogle Scholar
  30. Quirós, R. & E. Drago, 1999. The environmental state of Argentinean lakes: an overview. Lakes and Reservoirs: Research and Management 4: 55–64.CrossRefGoogle Scholar
  31. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecological & Evololution 8: 275–279.CrossRefGoogle Scholar
  32. Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London.Google Scholar
  33. Scheffer, M. & E. Jeppesen, 2007. Regime shifts in shallow lakes. Ecosystems 10: 1–3.CrossRefGoogle Scholar
  34. Schippers, P., H. van de Weerd, J. de Klein, B. de Jong & M. Scheffer, 2006. Impacts of agricultural phosphorus use in catchments on shallow lake water quality: about buffers, time delays and equilibria. Science of the Total Environment 369: 280–294.CrossRefPubMedGoogle Scholar
  35. Shinohara, R. & M. Isobe, 2010. Daily change in wind-induced sediment resuspension and phosphorus forms in a shallow eutrophic lake. Fundamental and Applied Limnology/Archiv für Hydrobiologie 176: 161–171.CrossRefGoogle Scholar
  36. Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind exposed Lake Arreso, Denmark. Hydrobiologia 228: 91–99.CrossRefGoogle Scholar
  37. Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration in Denmark and The Netherlands: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.CrossRefGoogle Scholar
  38. Tammeorg, O., J. Niemistö, T. Möls, R. Laugaste, K. Panksep & K. Kangur, 2013. Wind-induced sediment resuspension as a potential factor sustaining eutrophication in large and shallow Lake Peipsi. Aquatic Sciences 75: 559–570.CrossRefGoogle Scholar
  39. Torremorell, A., M. E. Llames, G. L. Pérez, R. Escaray, J. Bustingorry & H. E. Zagarese, 2009. Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. Freshwater Biology 54: 437–449.CrossRefGoogle Scholar
  40. Torremorell, A., J. Bustigorry, R. Escaray & H. E. Zagarese, 2007. Seasonal dynamics of a large, shallow lake, laguna Chascomús: the role of light limitation and other physical variables. Limnologica 37: 100–108.CrossRefGoogle Scholar
  41. van Nes, E. H., W. J. Rip & M. Scheffer, 2007. A theory for cyclic shifts between alternative states in shallow lakes. Ecosystems 10: 17–27.Google Scholar
  42. Zhu, G. W., B. Q. Qin & G. Gao, 2005. Direct evidence of phosphorus outbreak release from sediment to overlying water in a large shal-low lake caused by strong wind wave disturbance. Chinese Science Bulletin 50: 577–582.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Leonardo Lagomarsino
    • 1
    Email author
  • Nadia Diovisalvi
    • 1
  • José Bustingorry
    • 1
  • Roberto Escaray
    • 1
  • Horacio E. Zagarese
    • 1
  1. 1.Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH)Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)ChascomúsArgentina

Personalised recommendations