, Volume 743, Issue 1, pp 65–74 | Cite as

Effects of fishery protection on biometry and genetic structure of two target sea cucumber species from the Mediterranean Sea

  • Mercedes González-WangüemertEmail author
  • Sara Valente
  • Mehmet Aydin
Primary Research Paper


Sea cucumber fisheries are now occurring in most of the tropical areas of the world, having expanded from its origin in the central Indo-Pacific. Due to the overexploitation of these resources and the increasing demand from Asian countries, new target species from Mediterranean Sea and northeastern Atlantic Ocean are being caught. The fishery effects on biometry and genetic structure of two target species (Holothuria polii and H. tubulosa) from Turkey, were assessed. The heaviest and largest individuals of H. polii were found into the non-fishery area of Kusadasi, also showing the highest genetic diversity. Similar pattern was detected in H. tubulosa, but only the weight was significantly higher in the protected area. However, the observed differences on the fishery effects between species, could be explained considering the different percentage of catches (80% for H. polii and 20% for H. tubulosa).


Fishery effects Holothurians Eastern Mediterranean Sea Marine protected areas 



This research was supported by CUMFISH project (PTDC/MAR/119363/2010; funded by Fundacão para Ciência e Tecnologia (Portugal). M. González-Wangüemert was supported by a FCT postdoctoral fellowship (SFRH/BPD/70689/2010) and S. Valente by a FCT research fellow (CCMAR/BI/0023/2012). Special thanks to Silo Tarım company for their help during samplings, and Ozan Sen and Catarina Antunes for their collaboration on the lab work.


  1. Anderson, S. C., J. M. Flemming, R. Watson & H. K. Lotze, 2011. Serial exploitation of global sea cucumber fisheries. Fish and Fisheries 12: 317–339.CrossRefGoogle Scholar
  2. Audzijonyte, A., A. Kuparinen & E. Fulton, 2012. How fast is fisheries-induced evolution? Quantitative analysis of modelling and empirical studies. Evolutionary Applications. doi: 10.1111/eva.12044.Google Scholar
  3. Aydın, M., 2008. The commercial sea cucumbers fishery in Turkey. SPC Beche-de-Mer Information Bulletin 28: 40–43.Google Scholar
  4. Aydın, M., H. Sevgili, B. Tufan, Y. Emre & S. Köse, 2011. Proximate composition and fatty acid profile of three different fresh and dried commercial sea cucumbers from Turkey. International Journal of Food Science and Technology 46: 500–508.CrossRefGoogle Scholar
  5. Borrero-Pérez, G., 2010. Sistemática y filogeografía de las especies del subgénero Holothuria (Echinodermata: Holothuriidae: Holothuria) de la región Atlanto-Mediterránea. Universidad de Murcia, Murcia.Google Scholar
  6. Borrero-Pérez, G., M. González-Wangüemert, A. Pérez-Ruzafa & C. Marcos, 2011. Phylogeography of the Atlanto-Mediterranean sea cucumber Holothuria (Holothuria) mammata: the combined effects of historical processes and current oceanographical pattern. Molecular Ecology 20: 1964–1975.PubMedCrossRefGoogle Scholar
  7. Cariglia, A., S. K. Wilson, N. Graham, R. Fisher, J. Robinson, R. Aumeeruddy, R. Quatre & N. Polunin, 2013. Sea cucumbers in the Seychelles: effects of marine protected areas on high-value species. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 418–428.CrossRefGoogle Scholar
  8. Chessel, D., 1992. The ade4 package-I: one-table methods. R News 4: 5–10.Google Scholar
  9. Chuwen, B. M., I. C. Potter, N. G. Hall, S. D. Hoeksema & L. J. Laurenson, 2011. Changes in catch rates and length and age at maturity, but not growth, of an estuarine plotosid (Cnidoglanis macrocephalus) after heavy fishing. Fishery Bulletin 109: 247–260.Google Scholar
  10. Conand, C., 1989. Les Holothuries Aspidochirotes du lagon de Nouvelle-Calédonie: biologie, écologie et exploitation. Etudes et Thèses, O.R.S.T.O.M., Paris: 393 pp.Google Scholar
  11. Conand, C., 1990. The fishery resources of Pacific island countries. Part 2: Holothurians. FAO Fisheries Technical Paper, No. 272.2. FAO, Rome.Google Scholar
  12. Conand, C., 2004. Present status of world sea cucumber resources and utilisation: An international overview. In Lovatelli, A., C. Conand, S. Purcell, S. Uthicke, J. F. Hamel & A. Mercier (eds), Advances in Sea Cucumber Aquaculture and Management. FAO Fisheries Technical Paper, No. 463. FAO, Rome: 13–24.Google Scholar
  13. Conand, C., 2008. Population status, fisheries and trade of sea cucumbers in Africa and the Indian Ocean. In Toral-Granda, V., A. Lovatelli & M. Vasconcellos (eds), Sea Cucumbers: A Global Review of Fisheries and Trade. FAO Fisheries and Aquaculture Technical Paper, No. 516, Vol. 516. FAO, Rome: 143–193.Google Scholar
  14. Conand, C. & M. Byrne, 1993. A review of recent developments in the world sea cucumber fisheries. Marine Fisheries Review 55: 1–13.Google Scholar
  15. Costello, M. J., 2014. Long live Marine Reserves: a review of experiences and benefits. Biological Conservation 176: 289–296.CrossRefGoogle Scholar
  16. Coulon, P. & M. Jangoux, 1993. Feeding rate and sediment reworking by the holothuroid Holothuria tubulosa (Echinodermata) in a Mediterranean seagrass bed off Ischia Island, Italy. Marine Ecology Progress Series 92: 201–204.CrossRefGoogle Scholar
  17. Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Eriksson, H., M. Torre Castro & P. Olsson, 2012a. Mobility, expansion and management of a multi-species scuba diving fishery in East Africa. PLoS One 7: e35504.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Eriksson, H. M., M. Byrne & M. de la Torre-Castro, 2012b. Sea cucumber (Aspidochirotida) community, distribution and habitat utilization on the reefs of Mayotte, Western Indian Ocean. Marine Ecology Progress Series 452: 159–170.CrossRefGoogle Scholar
  20. Félix-Hackradt, F., C. W. Hackradt, A. Pérez-Ruzafa & J. A. García-Charton, 2013. Discordant patterns of genetic connectivity between two sympatric species, Mullus barbatus (Linnaeus, 1758) and Mullus surmuletus (Linnaeus, 1758), in south-western Mediterranean Sea. Marine Environmental Research 92: 23–34.PubMedCrossRefGoogle Scholar
  21. González-Wangüemert, M. & G. Borrero-Pérez, 2012. A new record of Holothuria arguinensis colonizing the Mediterranean Sea. Marine Biodiversity Records 5: e105.CrossRefGoogle Scholar
  22. González-Wangüemert, M. & A. Pérez-Ruzafa, 2012. In two waters: contemporary evolution of lagoonal and marine white seabream populations. Marine Ecology 33: 337–349.CrossRefGoogle Scholar
  23. González-Wangüemert, M. & C. Vergara-Chen, 2014. Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus. Helgoland Marine Research 68: 357–371.CrossRefGoogle Scholar
  24. González-Wangüemert, M., T. Vega-Fernández, A. Pérez-Ruzafa, V. M. Giacalone & F. Badalamenti, 2012. Genetic impact of a restocking experiment of white seabream in Sicily (Northwestern Mediterranean Sea). Journal of Sea Research 68: 41–48.CrossRefGoogle Scholar
  25. González-Wangüemert, M., C. Conand, S. Uthicke, G. Borrero-Pérez, M. Aydin, K. Erzini & E. Serrão, 2013a. Sea cucumbers: the new resource for a hungry fishery (CUMFISH). SPC Beche-de-Mer Information Bulletin 33: 65–66.Google Scholar
  26. González-Wangüemert, M., T. Braga, M. Silva, S. Valente, F. Rodrigues & E. Serrão, 2013b. Volunteer programme assesses the Holothuria arguinensis populations in Ria Formosa (southern Portugal). SPC Beche-de-Mer Information Bulletin 33: 44–48.Google Scholar
  27. González-Wangüemert, M., M. Aydin & C. Chantal, 2014. Assessment of target sea cucumber populations from Aegean Sea (Turkey): first insights for a right management of their fisheries. Ocean & Coastal Management 92: 87–94.CrossRefGoogle Scholar
  28. Hamel, J. H. & A. Mercier, 2008. Population status, fisheries and trade of sea cucumbers in temperate areas of the Northern Hemisphere. In Toral-Granda, V., A. Lovatelli & M. Vasconcellos (eds), Sea cucumbers. A global review on fishery and trade. FAO Fisheries Technical Paper No. 516. FAO, Rome.Google Scholar
  29. Hoareau, T. B. & E. Boissin, 2010. Design of phylum-specific hybrid primers for DNA bar coding: addressinzg the need for efficient COI amplification in the Echinodermata. Molecular Ecology Resources 10: 960–967.PubMedCrossRefGoogle Scholar
  30. Kazanidis, G., C. Antoniadou, A. P. Lolas, N. Neofitou, D. Vafidis, C. Chintiroglou & C. Neofitou, 2010. Population dynamics and reproduction of Holothuria tubulosa (Holothuroidea: Echinodermata) in the Aegean Sea. Journal of the Marine Biological Association of the United Kingdom 90: 895–901.CrossRefGoogle Scholar
  31. Kazanidis, G., A. Lolas, D. Vafidis, 2014. Reproductive cycle of the traditionally exploited sea cucumber Holothuria tubulosa (Holothuroidea: Aspidochirotida) in Pagasitikos Gulf, western Aegean Sea, Greece. Turkish Journal of Zoology 38. doi: 10.3906/zoo-1302-31.
  32. Kuparinenn, A. & J. Merila, 2007. Detecting and managing fisheries- induced evolution. Trends in Ecology and Evolution 22: 652–659.CrossRefGoogle Scholar
  33. Law, R., 2007. Fisheries-induced evolution: present status and future directions. Marine Ecology-Progress Series 335: 271–277.CrossRefGoogle Scholar
  34. Lovatelli, A., C. Conand, S. Purcell, S. Uthicke, J.-F. Hamel & A. Mercier, 2004. Advances in Sea Cucumber Aquaculture and Management. FAO Fisheries Technical Paper No. 463. FAO, Rome.Google Scholar
  35. Maillaud, C., 1999. Diving accidents related to sea cucumber fishing in Nose Be, Madagascar. SPC Beche-de-Mer Information Bulletin 11: 23–25.Google Scholar
  36. Mezali, K., V. Zupo & P. Francour, 2006. Population dynamics of Holothuria (Holothuria) tubulosa and Holothuria (Lessonothuria) polii of an Algerian Posidonia oceanica meadow. Biologia Marina Mediterranea 13: 158–161.Google Scholar
  37. Neuheimer, A. B. & C. T. Taggart, 2010. Can changes in length-at-age and maturation timing in Scotian Shelf haddock (Melanogrammus aeglefinus) be explained by fishing? Canadian Journal of Fisheries and Aquatic Sciences 67: 854–865.CrossRefGoogle Scholar
  38. Palumbi, S. R., 1996. Nucleic Acids II: The Polymerase Chain Reaction. Molecular Systematics. Sinauer Associates, Sunderland, MA.Google Scholar
  39. Pérez-Ruzafa, Á., M. González-Wangüemert, P. Lenfant, C. Marcos & J. A. García-Charton, 2006. Effects of fishing protection on the genetic structure of fish populations. Biological Conservation 129: 244–255.CrossRefGoogle Scholar
  40. Purcell, S., 2010. Managing Sea Cucumber Fisheries with an Ecosystem Approach. FAO Fisheries and Aquaculture Technical Paper No. 520. FAO, Rome.Google Scholar
  41. Purcell, S. W., 2014. Value, market preferences and trade of beche-de-mer from pacific Island sea cucumbers. PLoS One 9: e95075.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Purcell, S. W., A. Mercier, C. Conand, J. F. Hanel, V. Toral-Granda, A. Lovatelli & S. Uthicke, 2013. Sea cucumber fisheries: global analysis of stocks, management measures and drivers of overfishing. Fish and Fisheries 14: 34–59.CrossRefGoogle Scholar
  43. R Development Core Team., 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  44. Roberts, C. M., S. Andelman, G. Branch, R. H. Bustamante, J. C. Castilla, J. Dugan, B. S. Halpern, K. D. LaVerty, H. Leslie, J. Lubchenco, D. McArdle, H. P. Possingham, M. Ruckelshaus & R. R. Warner, 2003. Ecological criteria for evaluating candidate sites for marine reserves. Ecological Applications 13: S199–S214.CrossRefGoogle Scholar
  45. Ruffez, J., 2008. Diving for holothurians in Vietnam: A human and environmental disaster. SPC Beche-de-Mer Information Bulletin 28: 42–45.Google Scholar
  46. Ryman, N., F. Utter & L. Laikre, 1995. Protection of intraspecific biodiversity of exploited fishes. Reviews in Fish Biology and Fisheries 5: 417–446.CrossRefGoogle Scholar
  47. Sale, P. F., R. K. Cowen, B. S. Danilowicz, G. P. Jones, J. P. Kritzer, K. C. Lindeman, S. Planes, N. V. C. Polunin, G. T. Russ, Y. V. Sadovy & R. S. Steneck, 2005. Critical science gaps impede use of no-take fishery reserves. Trends in Ecology and Evolution 20: 74–80.PubMedCrossRefGoogle Scholar
  48. Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular Cloning. Cold Spring Harbor Press, New York.Google Scholar
  49. Sanford, E. & M. Kelly, 2011. Local adaptation in marine invertebrate. Annual Review of Marine Science 3: 509–535.PubMedCrossRefGoogle Scholar
  50. Teske, P. R., F. R. G. Forget, P. D. Cowley, S. von der Heyden & L. B. Beheregaray, 2010. Connectivity between marine reserves and exploited areas in the philopatric reef fish Chrysoblephus laticeps (Teleostei: Sparidae). Marine Biology 157: 2029–2042.CrossRefGoogle Scholar
  51. Toral-Granda, V., A. Lovatelli & M. Vasconcellos, 2008. Sea Cucumbers. A Global Review on Fishery and Trade. FAO Fisheries Technical Paper. No. 516. FAO, Rome.Google Scholar
  52. Uthicke, S., D. Welch & J. A. H. Benzie, 2004. Slow growth and lack of recovery in overfished holothurians on the Great Barrier Reef: evidence from DNA fingerprints and repeated large-scale surveys. Conservation Biology 18: 1395–1404.CrossRefGoogle Scholar
  53. Valente, S., E. Serrão & M. González-Wangüemert, 2014. West vs East Mediterranean Sea: origin and genetic differentiation of the sea cucumber Holothuria polii. Marine Ecology. doi: 10.1111/maec.12156.Google Scholar
  54. Vergara-Chen, C., M. González-Wangüemert, C. Marcos & A. Pérez-Ruzafa, 2010. Genetic diversity and connectivity remain high in Holothuria polii (Delle Chiaje 1823) across a coastal lagoon-open sea environmental gradient. Genetica 138: 895–906.PubMedCrossRefGoogle Scholar
  55. Walsh, M. R. & D. N. Reznick, 2008. Interactions between the direct and indirect effects of predators determine life history evolution in a killifish. Proceedings of the National Academy of Sciences of the United States of America 105: 594–599.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Wood, S., 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall, London.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mercedes González-Wangüemert
    • 1
    Email author
  • Sara Valente
    • 1
  • Mehmet Aydin
    • 2
  1. 1.Centro de Ciências do Mar (CCMAR), CIMAR-Laboratório AssociadoUniversidade do AlgarveFaroPortugal
  2. 2.Faculty of Marine SciencesOrdu UniversityFatsaTurkey

Personalised recommendations