, Volume 746, Issue 1, pp 13–22 | Cite as

A microbial perspective on biological invasions in aquatic ecosystems

  • Stefano AmalfitanoEmail author
  • Manuela Coci
  • Gianluca Corno
  • Gian Marco Luna


Microorganisms are essential components of all aquatic ecosystems and are primarily responsible for biogeochemical cycles and key environmental processes. Despite their potential to influence the ecological functioning of biological communities and ecosystems at a global scale, the mechanisms of microbial invasions still lack specific and generalizable theories. Here, we review some of the ecological mechanisms, among those relevant under the global change scenario, which may facilitate the spread of microbial invaders, with a specific focus on aquatic prokaryotes (i.e. Bacteria). We summarize a selection of ecological features of vulnerable microbial communities (functional and structural stability, diversity, invasibility, and invasiveness) and environmental stressors for invasions (temperature increase, pollution, nutrients and resources fluctuations, and food web alterations). Owing to the rapid microbial adaptation to laboratory conditions, straightforward experimental approaches appear as suitable and informative tools to explore the invasion mechanisms in artificially assembled communities. We conclude by delineating future research steps required for a better understanding of the potential consequences of microbial invasions in the aquatic environment.


Microbial community Bacteria Pathogens Invasibility Invasiveness 



This work was partially supported by the Short-Term Mobility programme of the CNR (Italy), the National Flag programme RITMARE (SP3-WP2-A2), and the IPA Project “BALMAS—Ballast Water Management System for Adriatic Sea Protection” (project code 1° STR/0005) funded by EU.


  1. Amend, A. S., T. A. Oliver, L. A. Amaral-Zettler, A. Boetius, J. A. Fuhrman, M. C. Horner-Devine, S. M. Huse, D. B. M. Welch, A. C. Martiny, A. Ramette, L. Zinger, M. L. Sogin & J. B. H. Martiny, 2013. Macroecological patterns of marine bacteria on a global scale. Journal of Biogeography 40: 800–811.CrossRefGoogle Scholar
  2. Barberan, A., E. O. Casamayor & N. Fierer, 2014. The microbial contribution to macroecology. Frontiers in Microbiology 5: e203.CrossRefGoogle Scholar
  3. Becks, L., F. M. Hilker, H. Malchow, K. Jurgens & H. Arndt, 2005. Experimental demonstration of chaos in a microbial food web. Nature 435: 1226–1229.PubMedCrossRefGoogle Scholar
  4. Blokesch, M. & G. K. Schoolnik, 2007. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLOS Pathogens 3: 733–742.CrossRefGoogle Scholar
  5. Blom, J. F. & J. Pernthaler, 2010. Antibiotic effects of three strains of chrysophytes (Ochromonas, Poterioochromonas) on freshwater bacterial isolates. FEMS Microbiology Ecology 71: 281–290.PubMedCrossRefGoogle Scholar
  6. Bohannan, B. J. M. & R. E. Lenski, 2000. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecology Letters 3: 362–377.CrossRefGoogle Scholar
  7. Bollens, S. M., J. R. Cordell, S. Avent & R. Hooff, 2002. Zooplankton invasions: a brief review, plus two case studies from the northeast Pacific Ocean. Hydrobiologia 480: 87–110.CrossRefGoogle Scholar
  8. Callieri, C., G. Corno & R. Bertoni, 2006. Bacterial grazing by mixotrophic flagellates and Daphnia longispina: a comparison in a fishless alpine lake. Aquatic Microbial Ecology 42: 127–137.CrossRefGoogle Scholar
  9. Capdevila-Arguelles, L. & B. Zilletti, 2010. A perspective on climate change and invasive alien species. Council of Europe Nature and Environment Series 156: 365–417.Google Scholar
  10. Chakraborty, A. & B. L. Li, 2010. The role of fluctuating resource supply in a habitat maintained by the competition-colonization trade-off. In Li, B. L. (ed.) Ecological Complexity and Sustainability. Annals of the New York Academy of Sciences 1195: 27–39.Google Scholar
  11. Chave, J., H. C. Muller-Landau & S. A. Levin, 2002. Comparing classical community models: theoretical consequences for patterns of diversity. American Naturalist 159: 1–23.PubMedCrossRefGoogle Scholar
  12. Colautti, R. I., I. A. Grigorovich & H. J. MacIsaac, 2006. Propagule pressure: a null model for biological invasions. Biological Invasions 8: 1023–1037.CrossRefGoogle Scholar
  13. Corno, G., 2006. Effects of nutrient availability and Ochromonas sp predation on size and composition of a simplified aquatic bacterial community. FEMS Microbiology Ecology 58: 354–363.PubMedCrossRefGoogle Scholar
  14. Corno, G. & K. Juergens, 2008. Structural and functional patterns of bacterial communities in response to protist predation along an experimental productivity gradient. Environmental Microbiology 10: 2857–2871.PubMedCrossRefGoogle Scholar
  15. Corno, G., E. Caravati, C. Callieri & R. Bertoni, 2008. Effects of predation pressure on bacterial abundance, diversity, and size-structure distribution in an oligotrophic system. Journal of Limnology 67: 107–119.CrossRefGoogle Scholar
  16. Corno, G., J. Villiger & J. Pernthaler, 2013. Coaggregation in a microbial predator-prey system affects competition and trophic transfer efficiency. Ecology 94: 870–881.CrossRefGoogle Scholar
  17. Croswell, A., E. Amir, P. Teggatz, M. Barman & N. H. Salzman, 2009. Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric salmonella infection. Infection and Immunity 77: 2741–2753.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Davis, M. A. & M. Pelsor, 2001. Experimental support for a resource-based mechanistic model of invasibility. Ecology Letters 4: 421–428.CrossRefGoogle Scholar
  19. Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528–534.CrossRefGoogle Scholar
  20. Diehl, S. & M. Feissel, 2001. Intraguild prey suffer from enrichment of their resources: a microcosm experiment with ciliates. Ecology 82: 2977–2983.CrossRefGoogle Scholar
  21. Drake, L. A., M. A. Doblin & F. C. Dobbs, 2007. Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Marine Pollution Bulletin 55: 333–341.PubMedCrossRefGoogle Scholar
  22. Dukes, J. S., 2001. Biodiversity and invasibility in grassland microcosms. Oecologia 126: 563–568.CrossRefGoogle Scholar
  23. Eisenhauer, N., A. Milcu, A. C. W. Sabais & S. Scheu, 2008. Animal ecosystem engineers modulate the diversity-invasibility relationship. PLOS One 3: e3489.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Eisenhauer, N., S. Scheu & A. Jousset, 2012. Bacterial diversity stabilizes community productivity. PLOS One 7: e34517.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Eisenhauer, N., W. Schulz, S. Scheu & A. Jousset, 2013. Niche dimensionality links biodiversity and invasibility of microbial communities. Functional Ecology 27: 282–288.CrossRefGoogle Scholar
  26. Fargione, J. E. & D. Tilman, 2005. Diversity decreases invasion via both sampling and complementarity effects. Ecology Letters 8: 604–611.CrossRefGoogle Scholar
  27. Fazi, S., S. Amalfitano, C. Piccini, A. Zoppini, A. Puddu & J. Pernthaler, 2008. Colonization of overlaying water by bacteria from dry river sediments. Environmental Microbiology 10: 2760–2772.PubMedCrossRefGoogle Scholar
  28. Fischbach, M. A. & C. T. Walsh, 2009. Antibiotics for emerging pathogens. Science 325: 1089–1093.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman & B. Von Holle, 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88: 3–17.PubMedCrossRefGoogle Scholar
  30. Friman, V. P., A. Jousset & A. Buckling, 2014. Rapid prey evolution can alter the structure of predator-prey communities. Journal of Evolutionary Biology 27: 374–380.PubMedCrossRefGoogle Scholar
  31. Gatto, M., L. Mari, E. Bertuzzo, R. Casagrandi, L. Righetto, I. Rodriguez-Iturbe & A. Rinaldo, 2013. Spatially explicit conditions for waterborne pathogen invasion. American Naturalist 182: 328–346.PubMedCrossRefGoogle Scholar
  32. Gherardi, F., 2006. Crayfish invading Europe: the case study of Procambarus clarkii. Marine and Freshwater Behaviour and Physiology 39: 175–191.CrossRefGoogle Scholar
  33. Gibbons, S. M., J. G. Caporaso, M. Pirrung, D. Field, R. Knight & J. A. Gilbert, 2013. Evidence for a persistent microbial seed bank throughout the global ocean. Proceedings of the National Academy of Sciences of the United States of America 110: 4651–4655.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Gilbert, J. A., D. Field, P. Swift, S. Thomas, D. Cummings, B. Temperton, K. Weynberg, S. Huse, M. Hughes, I. Joint, P. J. Somerfield & M. Muehling, 2010. The taxonomic and functional diversity of microbes at a temperate coastal site: a “multi-omic” study of seasonal and diel temporal variation. PLOS One 5: e15545.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Hanson, C. A., J. A. Fuhrman, M. C. Horner-Devine & J. B. H. Martiny, 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nature Reviews Microbiology 10: 497–506.PubMedGoogle Scholar
  36. Hodgson, D. J., P. B. Rainey & A. Buckling, 2002. Mechanisms linking diversity, productivity and invasibility in experimental bacterial communities. Proceedings of the Royal Society B 269: 2277–2283.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setala, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.CrossRefGoogle Scholar
  38. Hooper, D. U., E. C. Adair, B. J. Cardinale, J. E. K. Byrnes, B. A. Hungate, K. L. Matulich, A. Gonzalez, J. E. Duffy, L. Gamfeldt & M. I. O’Connor, 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486: 105–129.PubMedGoogle Scholar
  39. Hornak, K. & G. Corno, 2012. Every coin has a back side: invasion by Limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities. PLOS One 7: e51576.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Hulme, P. E., W. Nentwig, P. Pysek & M. Vila, 2010. DAISIE: Delivering Alien Invasive Species Inventories for Europe. Atlas of Biodiversity Risk: 134–135.Google Scholar
  41. Huston, M. A., 1997. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110: 449–460.CrossRefGoogle Scholar
  42. Jessup, C. M., S. E. Forde & B. J. M. Bohannan, 2005. Microbial experimental systems in ecology. Advances in Ecological Research 37: 273–307.CrossRefGoogle Scholar
  43. Jiang, L. & P. J. Morin, 2004. Productivity gradients cause positive diversity–invasibility relationships in microbial communities. Ecology Letters 7: 1047–1057.CrossRefGoogle Scholar
  44. Jousset, A., N. Eisenhauer, E. Materne & S. Scheu, 2013. Evolutionary history predicts the stability of cooperation in microbial communities. Nature Communications 4: e3573.CrossRefGoogle Scholar
  45. Jousset, A., B. Schmid, S. Scheu & N. Eisenhauer, 2011a. Genotypic richness and dissimilarity opposingly affect ecosystem functioning. Ecology Letters 14: 537–545.PubMedCrossRefGoogle Scholar
  46. Jousset, A., W. Schulz, S. Scheu & N. Eisenhauer, 2011b. Intraspecific genotypic richness and relatedness predict the invasibility of microbial communities. ISME Journal 5: 1108–1114.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Keane, R. M. & M. J. Crawley, 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution 17: 164–170.CrossRefGoogle Scholar
  48. Kuemmerer, K., 2009. Antibiotics in the aquatic environment – a review – part I. Chemosphere 75: 417–434.CrossRefGoogle Scholar
  49. Ladau, J., T. J. Sharpton, M. M. Finucane, G. Jospin, S. W. Kembel, J. O’Dwyer, A. F. Koeppel, J. L. Green & K. S. Pollard, 2013. Global marine bacterial diversity peaks at high latitudes in winter. ISME Journal 7: 1669–1677.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Langenheder, S., M. T. Bulling, M. Solan & J. I. Prosser, 2010. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLOS One 5: e10834.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Lawrence, J. E., 2008. Furtive foes: algal viruses as potential invaders. Ices Journal of Marine Science 65: 716–722.CrossRefGoogle Scholar
  52. Lennon, J. T. & S. E. Jones, 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Reviews Microbiology 9: 119–130.PubMedCrossRefGoogle Scholar
  53. Levine, J. M., 2000. Species diversity and biological invasions: relating local process to community pattern. Science 288: 852–854.PubMedCrossRefGoogle Scholar
  54. Li, W. & M. H. H. Stevens, 2012. Fluctuating resource availability increases invasibility in microbial microcosms. Oikos 121: 435–441.CrossRefGoogle Scholar
  55. Lindstrom, E. S. & O. Ostman, 2011. The importance of dispersal for bacterial community composition and functioning. PLOS One 6: e25883.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Litchman, E., 2010. Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecology Letters 13: 1560–1572.PubMedCrossRefGoogle Scholar
  57. Lodge, D. M., 1993. Biological invasions – lessons for ecology. Trends in Ecology & Evolution 8: 133–137.CrossRefGoogle Scholar
  58. Logares, R., E. S. Lindstrom, S. Langenheder, J. B. Logue, H. Paterson, J. Laybourn-Parry, K. Rengefors, L. Tranvik & S. Bertilsson, 2013. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME Journal 7: 937–948.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Loreau, M. & N. Mouquet, 1999. Immigration and the maintenance of local species diversity. American Naturalist 154: 427–440.PubMedCrossRefGoogle Scholar
  60. Luna, G. M., C. Vignaroli, C. Rinaldi, A. Pusceddu, L. Nicoletti, M. Gabellini, R. Danovaro & F. Biavasco, 2010. Extraintestinal Escherichia coli carrying virulence genes in coastal marine sediments. Applied and Environmental Microbiology 76: 5659–5668.PubMedCentralPubMedCrossRefGoogle Scholar
  61. McGeoch, M. A., D. Spear, E. J. Kleynhans & E. Marais, 2012. Uncertainty in invasive alien species listing. Ecological Applications 22: 959–971.PubMedCrossRefGoogle Scholar
  62. Meinesz, A., J. Devaugelas, B. Hesse & X. Mari, 1993. Spread of the introduced tropical green-alga Caulerpa taxifolia in northern mediterranean waters. Journal of Applied Phycology 5: 141–147.CrossRefGoogle Scholar
  63. Molnar, J. L., R. L. Gamboa, C. Revenga & M. D. Spalding, 2008. Assessing the global threat of invasive species to marine biodiversity. Frontiers in Ecology and the Environment 6: 485–492.CrossRefGoogle Scholar
  64. Morin, P., 1999. Productivity, intraguild predation, and population dynamics in experimental food webs. Ecology 80: 752–760.CrossRefGoogle Scholar
  65. Naeem, S., 2008. Advancing realism in biodiversity research. Trends in Ecology & Evolution 23: 414–416.CrossRefGoogle Scholar
  66. Nogales, B., M. P. Lanfranconi, J. M. Pina-Villalonga & R. Bosch, 2011. Anthropogenic perturbations in marine microbial communities. FEMS Microbiology Reviews 35: 275–298.PubMedCrossRefGoogle Scholar
  67. Pedros-Alio, C., 2006. Marine microbial diversity: can it be determined? Trends in Microbiology 14: 257–263.PubMedCrossRefGoogle Scholar
  68. Pedros-Alio, C., 2012. The rare bacterial biosphere. Annual Review of Marine Science 4: 449–466.PubMedCrossRefGoogle Scholar
  69. Pernthaler, J., 2005. Predation on prokaryotes in the water column and its ecological implications. Nature Reviews Microbiology 3: 537–546.PubMedCrossRefGoogle Scholar
  70. Perrings, C., K. Dehnen-Schmutz, J. Touza & M. Williamson, 2005. How to manage biological invasions under globalization. Trends in Ecology & Evolution 20: 212–215.CrossRefGoogle Scholar
  71. Peter, H., S. Beier, S. Bertilsson, E. S. Lindstrom, S. Langenheder & L. J. Tranvik, 2011. Function-specific response to depletion of microbial diversity. ISME Journal 5: 351–361.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Pimentel, D., L. Lach, R. Zuniga & D. Morrison, 2000. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50: 53–65.CrossRefGoogle Scholar
  73. Price, J. E. & P. J. Morin, 2004. Colonization history determines alternate community states in a food web of intraguild predators. Ecology 85: 1017–1028.CrossRefGoogle Scholar
  74. Proia, L., G. Lupini, V. Osorio, S. Perez, D. Barcelo, T. Schwartz, S. Amalfitano, S. Fazi, A. M. Romani & S. Sabater, 2013. Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river. Chemosphere 92: 1126–1135.PubMedCrossRefGoogle Scholar
  75. Randolph, S. E. & D. J. Rogers, 2010. The arrival, establishment and spread of exotic diseases: patterns and predictions. Nature Reviews Microbiology 8: 361–371.PubMedCrossRefGoogle Scholar
  76. Ricciardi, A., M. F. Hoopes, M. P. Marchetti & J. L. Lockwood, 2013. Progress toward understanding the ecological impacts of nonnative species. Ecological Monographs 83: 263–282.CrossRefGoogle Scholar
  77. Rosindell, J., S. P. Hubbell & R. S. Etienne, 2011. The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology & Evolution 26: 340–348.CrossRefGoogle Scholar
  78. Severin, I., O. Ostman & E. S. Lindstrom, 2013. Variable effects of dispersal on productivity of bacterial communities due to changes in functional trait composition. PLOS One 8: e80825.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Simberloff, D., L. Souza, M. A. Nunez, M. N. Barrios-Garcia & W. Bunn, 2012. The natives are restless, but not often and mostly when disturbed. Ecology 93: 598–607.PubMedCrossRefGoogle Scholar
  80. Shade, A., H. Peter, S. D. Allison, D. L. Baho, M. Berga, H. Burgmann, D. H. Huber, S. Langenheder, J. T. Lennon, J. B. H. Martiny, K. L. Matulich, T. M. Schmidt & J. Handelsman, 2012. Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology 3: e417.CrossRefGoogle Scholar
  81. Stoll, C., J. P. S. Sidhu, A. Tiehm & S. Toze, 2012. Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environmental Science & Technology 46: 9716–9726.CrossRefGoogle Scholar
  82. Taylor, B. W. & M. L. Bothwell, 2014. The origin of invasive microorganisms matters for science, policy, and management: the case of Didymosphenia geminata. Bioscience 64: 531–538.CrossRefGoogle Scholar
  83. Thingstad, T. F., 2000. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnology and Oceanography 45: 1320–1328.CrossRefGoogle Scholar
  84. Tilman, D., 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80: 1455–1474.Google Scholar
  85. Torsvik, V., L. Ovreas & T. F. Thingstad, 2002. Prokaryotic diversity – magnitude, dynamics, and controlling factors. Science 296: 1064–1066.PubMedCrossRefGoogle Scholar
  86. van der Putten, W. H., J. N. Klironomos & D. A. Wardle, 2007. Microbial ecology of biological invasions. ISME Journal 1: 28–37.PubMedCrossRefGoogle Scholar
  87. van Elsas, J. D., M. Chiurazzi, C. A. Mallon, D. Elhottova, V. Kristufek & J. F. Salles, 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences of the United States of America 109: 1159–1164.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Vezzulli, L., I. Brettar, E. Pezzati, P. C. Reid, R. R. Colwell, M. G. Hoefle & C. Pruzzo, 2012. Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME Journal 6: 21–30.PubMedCentralPubMedCrossRefGoogle Scholar
  89. Vezzulli, L., R. R. Colwell & C. Pruzzo, 2013. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microbial Ecology 65: 817–825.PubMedCrossRefGoogle Scholar
  90. Vitousek, P. M., C. M. Dantonio, L. L. Loope & R. Westbrooks, 1996. Biological invasions as global environmental change. American Scientist 84: 468–478.Google Scholar
  91. Walther, B. A. & P. W. Ewald, 2004. Pathogen survival in the external environment and the evolution of virulence. Biological Reviews 79: 849–869.Google Scholar
  92. Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg & F. Bairlein, 2002. Ecological responses to recent climate change. Nature 416: 389–395.PubMedCrossRefGoogle Scholar
  93. Winter, C., T. Bouvier, M. G. Weinbauer & T. F. Thingstad, 2010. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “Killing the Winner” hypothesis revisited. Microbiology and Molecular Biology Reviews 74: 42–57.PubMedCentralPubMedCrossRefGoogle Scholar
  94. Xu, J. P., 2006. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Molecular Ecology 15: 1713–1731.PubMedCrossRefGoogle Scholar
  95. Yang, L. H., J. L. Bastow, K. O. Spence & A. N. Wright, 2008. What can we learn from resource pulses? Ecology 89: 621–634.PubMedCrossRefGoogle Scholar
  96. Zinger, L., A. Gobet & T. Pommier, 2012. Two decades of describing the unseen majority of aquatic microbial diversity. Molecular Ecology 21: 1878–1896.PubMedCrossRefGoogle Scholar
  97. Zoppini, A., N. Ademollo, S. Amalfitano, P. Casella, L. Patrolecco & S. Polesello, 2014. Organic priority substances and microbial processes in river sediments subject to contrasting hydrological conditions. Science of the total environment 484: 74–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stefano Amalfitano
    • 1
    Email author
  • Manuela Coci
    • 2
    • 3
  • Gianluca Corno
    • 3
  • Gian Marco Luna
    • 4
  1. 1.Water Research Institute (CNR-IRSA)MonterotondoItaly
  2. 2.Microb&coCataniaItaly
  3. 3.MEG - Microbial Ecology GroupInstitute of Ecosystem Study (CNR-ISE)VerbaniaItaly
  4. 4.Institute of Marine Sciences (CNR-ISMAR)VeniceItaly

Personalised recommendations