, Volume 748, Issue 1, pp 161–169 | Cite as

Microhabitat variations in diatom composition and stable isotope ratios of the epilithic algae in Lake Malawi

  • Atsushi MaruyamaEmail author
  • Kohei Shinohara
  • Michito Sakurai
  • Taisuke Ohtsuka
  • Bosco Rusuwa


Microhabitat-level spatial variations in diatom and isotope compositions of epilithic periphyton in the littoral zones of Lake Malawi were examined using periphyton samples collected from seven regions of the lake. Discriminant analysis revealed a clear difference in diatom composition among the slopes of the rocks from which the samples were collected. This difference may be associated with interspecific variation in the adhesive power of diatoms. The slope of the rocks also strongly affected the stable carbon isotope ratios of periphyton, together with subsidiary effects of algae size class, sampling site, depth, and some of their interaction terms. The effect of slope can be explained by the decrease in photosynthetic activity along the slope, which originates from the decline in sunlight. Thus, the diatom composition and carbon isotope ratios may be good indicators of microhabitat and have the potential to be powerful tools for quantitative measurement of microhabitat utilization of epilithic algae-feeding consumers of this lake, including territorial cichlids.


Attached algae δ13Gut content Niche Periphyton Slope Stable carbon isotope Rock slope 



We are grateful to Mr R. Zatha, Mr Y. Kazembe, Mr B. Matundu, Mr A. Nyoni, and Mr A. Mangawa at the University of Malawi for their support during sample collection. We also thank Ms Y. Nonomatsu, Ms M. Umemoto, Mr Y. Nakamura, and Ms E. Ishizumi for their assistance with laboratory analyses. Our thanks go to Dr M. Yuma, Dr M. Genner, and anonymous reviewers for their constructive criticism. This study was conducted in accordance with the prevailing laws of the Republic of Malawi. Financial support was provided by the Joint Research Centre for Science and Technology of Ryukoku University and by JSPS KAKENHI Grant Number 25840144.

Supplementary material

10750_2014_1977_MOESM1_ESM.docx (124 kb)
Supplementary material 1 (DOCX 124 kb)


  1. Abe, S., O. Katano, T. Nagumo & J. Tanaka, 2000. Grazing effects of ayu, Plecoglossus altivelis, on the species composition of benthic algal communities in the Kiso River. Diatom 16: 37–43.Google Scholar
  2. Bearhop, S., C. E. Adams, S. Waldron, R. A. Fuller & H. Macleod, 2004. Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73: 1007–1012.CrossRefGoogle Scholar
  3. Beauchamp, R. S. A., 1953. Hydrological data from Lake Nyasa. Journal of Ecology 41: 226–239.CrossRefGoogle Scholar
  4. Bootsma, H. A., R. E. Hecky, R. H. Hesslein & G. F. Turner, 1996. Food partitioning among Lake Malawi nearshore fishes as revealed by stable isotope analyses. Ecology 77: 1286–1290.CrossRefGoogle Scholar
  5. Cocquyt, C. & W. Vyverman, 1994. Composition and diversity of the algal flora in the East African Great Lakes: a comparative survey of lakes Tanganyika, Malawi (Nyasa) and Victoria. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie 44: 161–172.Google Scholar
  6. DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495–506.CrossRefGoogle Scholar
  7. DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341351.Google Scholar
  8. Dixit, S. S. & J. P. Smol, 2000. Sedimentary diatoms and chrysophytes as indicators of lakewater quality in North America. In Martin, R. E. (ed.), Environmental Micropaleontology. Topics in Geobiology, Vol. 15. Kluwer Academic/Plenum Publishers, New York: 279–303.CrossRefGoogle Scholar
  9. Genner, M. J., G. F. Turner, S. Barker & S. J. Hawkins, 1999a. Niche segregation among Lake Malawi cichlid fishes? Evidence from stable isotope signatures. Ecology Letters 2: 185–190.CrossRefGoogle Scholar
  10. Genner, M. J., G. F. Turner & S. J. Hawkins, 1999b. Foraging of rocky habitat cichlid fishes in Lake Malawi: coexistence through niche partitioning? Oecologia 121: 283–292.CrossRefGoogle Scholar
  11. Hesslein, R. H., 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Canadian Journal of Fisheries and Aquatic Sciences 50: 2071–2076.CrossRefGoogle Scholar
  12. Higgins, S. N., H. J. Kling, R. E. Hecky, W. D. Taylor & H. A. Bootsma, 2003a. The community composition, distribution, and nutrient status of epilithic periphyton at five rocky littoral zone sites in Lake Malawi, Africa. Journal of Great Lakes Research 29: 181–189.CrossRefGoogle Scholar
  13. Higgins, M. J., P. Molino, P. Mulvaney & R. Wetherbee, 2003b. The structure and nanomechanical properties of the adhesive mucilage that mediates diatom-substratum adhesion and motility. Journal of Phycology 39: 1181–1193.CrossRefGoogle Scholar
  14. Hill, W. R. & R. G. Middleton, 2006. Changes in carbon stable isotope ratios during periphyton development. Limnology and Oceanography 51: 2360–2369.CrossRefGoogle Scholar
  15. Hobson, K. A., 1999. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120: 314–326.CrossRefGoogle Scholar
  16. Hubbell, S. P., 2001. The unified neutral theory of biodiversity and biogeography, Vol. 32. Princeton University Press, Princeton.Google Scholar
  17. Julliard, R., J. Clavel, V. Devictor, F. Jiguet & D. Couvet, 2006. Spatial segregation of specialists and generalists in bird communities. Ecology letters 9: 1237–1244.CrossRefPubMedGoogle Scholar
  18. Klee, R. & S. J. Casper, 1992. New centric diatoms (Thalassiosirales) of Lake Malawi (formerly Lake Nyassa; Malawi, East Africa). Archiv Fur Protistenkunde 142: 179–192.CrossRefGoogle Scholar
  19. Klee, R. & S. J. Casper, 1995. Stephanodiscus nyassae Klee et Casper nov. spec., a new centric diatom (Thalassiosirales) from Lake Malawi (Malawi, East Africa). Archiv Fur Protistenkunde 146: 293–297.CrossRefGoogle Scholar
  20. Krammer, K. & H. Lange-bertalot, 1988. Bacillariophyceae. In Ettl, H., J. Gerloff, H. Heining & D. Mollrnhauser (eds), Süßwasserflora von Mitteleuropa: Band 2/2 G. Fischer, Stuttgart: 1–536.Google Scholar
  21. Lange-Bertalot, H., 2001. Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia. In Lange-Bertalot, H. (ed.), Diatoms of Europe 2. A. R. G. Gantner, Ruggell: 1–526.Google Scholar
  22. Levine, J. M. & J. HilleRisLambers, 2009. The importance of niches for the maintenance of species diversity. Nature 461: 254–257.CrossRefPubMedGoogle Scholar
  23. MacLeod, N. A. & D. R. Barton, 1998. Effects of light intensity, water velocity, and species composition on carbon and nitrogen stable isotope ratios in periphyton. Canadian Journal of Fisheries and Aquatic Sciences 55: 1919–1925.CrossRefGoogle Scholar
  24. Marks, J. C. & R. L. Lowe, 1993. Interactive effects of nutrient availability and light levels on the periphyton composition of a large oligotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 50(6): 1270–1278.CrossRefGoogle Scholar
  25. Marsh, A. C. & A. J. Ribbink, 1985. Feeding site utilization in three sympatric species of Petrotilapia (Pisces: Cichlidae) from L. Malawi. Biological Journal of Linnean Society 25: 331–338.CrossRefGoogle Scholar
  26. Maruyama, A., Y. Yamada, B. Rusuwa & M. Yuma, 2001. Change in stable nitrogen isotope ratio in the muscle tissue of a migratory goby, Rhinogobius sp., in a natural setting. Canadian Journal of Fisheries and Aquatic Sciences 58: 2125–2128.CrossRefGoogle Scholar
  27. May, R. M., 1973. Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton.Google Scholar
  28. Müller, O., 1903. Bacillariaceen aus dem Nyassalande und einigen benachbarten Gebieten. Erste Folge. Surirelloidae-Surirelleae. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie 34: 9–38.Google Scholar
  29. Müller, O., 1904. Bacillariaceen aus dem Nyassalande und einigen benachbarten Gebieten. Zweite Folge Discoidae-Coscinodisceae. Discoidae-Eupodisceae. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie 34: 255–301.Google Scholar
  30. Müller, O., 1905. Bacillariaceen aus dem Nyassalande und einigen benachbarten Gebieten. Dritte Folge Discoidae-Coscinodisceae. Discoidae-Eupodisceae. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie 34: 138–205.Google Scholar
  31. Müller, O., 1910. Bacillariaceen aus dem Nyassalande und einigen benachbarten Gebieten. Vierte Folge Naviculoideae-Naviculeae-Naviculinae. Fragilarioideae-Fragilarieae-Fragilarinae. Fragilarioideae-Fragilarieae-Eunotiinae. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie 45: 69–122.Google Scholar
  32. Reinthal, P. N., 1990. The feeding habits of a group of herbivorous rock-dwelling cichlid fishes (Cichlidae: Perciformes) from Lake Malawi, Africa. Environmental Biology of Fishes 27: 215–233.CrossRefGoogle Scholar
  33. Ribbink, A. J., B. A. Marsh, A. C. Marsh, A. C. Ribbink & B. J. Sharp, 1983. A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi. South African Journal of Zoology 18: 149–310.Google Scholar
  34. Rutz, C., L. A. Bluff, N. Reed, J. Troscianko, J. Newton, R. Inger, A. Kacelnik & S. Bearhop, 2010. The ecological significance of tool use in New Caledonian crows. Science 329: 1523–1526.CrossRefPubMedGoogle Scholar
  35. Schmidt, A., M. Schmidt, F. Fricke, H. Heiden, O. Müller & F. Hustedt, 1874–1959. Atlas der Diatomaceenkunde. Leipzig, Aschersleben.Google Scholar
  36. Shinohara, K., A. Maruyama, B. Rusuwa & T. Ohtsuka, 2014. Taxonomic revision of three diatoms found in Lake Malawi: Afrocymbella brunii (Fricke) comb. nov., Afrocymbella rossii (Kociolek & Stoermer) comb. nov., and Aulacoseira euareolata (O.Müller) comb. nov. et nom. nov. Phycological Research 62: 9–15.CrossRefGoogle Scholar
  37. Stoermer, E. F. & J. P. Smol, 1999. The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge.Google Scholar
  38. Turner, G. F., O. Seehausen, M. E. Knight, C. J. Allender & R. Robinson, 2001. How many species of cichlid fishes are there in African lakes? Molecular Ecology 10: 793–806.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Atsushi Maruyama
    • 1
    Email author
  • Kohei Shinohara
    • 1
  • Michito Sakurai
    • 1
  • Taisuke Ohtsuka
    • 2
  • Bosco Rusuwa
    • 3
  1. 1.Faculty of Science and TechnologyRyukoku UniversityOtsuJapan
  2. 2.Lake Biwa MuseumKusatsuJapan
  3. 3.Department of Biological Sciences, Chancellor CollegeUniversity of MalawiZombaMalawi

Personalised recommendations