Advertisement

Hydrobiologia

, Volume 746, Issue 1, pp 233–243 | Cite as

Temporal effects on host-parasite associations in four naturalized goby species living in sympatry

  • Markéta OndračkováEmail author
  • Zdenka Valová
  • Iveta Hudcová
  • Veronika Michálková
  • Andrea Šimková
  • Jost Borcherding
  • Pavel Jurajda
INVASIVE SPECIES

Abstract

Introduced host species are often characterised by reduced parasite numbers compared to their native populations. Any such advantage gained from parasite release following introduction into a new area may often diminish over a short period as the new host gradually acquires local parasites. In this study, the metazoan parasite communities of four goby species (Proterorhinus semilunaris, Ponticola kessleri, Neogobius melanostomus, and Neogobius fluviatilis) recently introduced into the lower River Rhine were investigated. Mean parasite abundance and infracommunity richness were positively associated with time since host introduction, both parasite variables being the highest in P. semilunaris. In Ponticola and Neogobius species, parasite species richness and the dominance of larval parasites in the Lower Rhine were similar to that for non-native populations in the middle Danube. Sporadic local parasite acquisition and infection, predominantly by species commonly found in the native range, led to a relatively high qualitative similarity in parasite communities between hosts. The relationship between parasite abundance and fish size reflected size-dependant food selectivity and/or parasite accumulation throughout the host’s life. Data from this study emphasise the importance of duration of co-occurrence, host habitat and foraging preference, as well as the co-introduction of suitable intermediate hosts, for parasite community composition in related species.

Keywords

Non-native species Fish Gobiidae Parasite Rhine 

Notes

Acknowledgments

This study was financially supported by the Grant Agency of the Czech Republic, Grant No. P505/12/2569. We would like to thank our colleagues from the Department of Fish Ecology at the Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, and from the Grietherbusch Ecological Research Station, University of Cologne, Germany, for assistance with field sampling. We would also like to thank our colleagues from the Parasitology Research Group of the Department of Botany and Zoology, Masaryk University, for help with parasitological dissection of the fish. Finally, we thank Kevin Roche and Matthew Nicholls for help with English correction.

References

  1. Adámek, Z., P. Jurajda, V. Prášek & I. Sukop, 2010. Seasonal diet pattern of non-native tubenose goby (Proterorhinus semilunaris) in a lowland reservoir (Mušov, Czech Republic). Knowledge and Management of Aquatic Ecosystems 397: 02.CrossRefGoogle Scholar
  2. Ahnelt, H., P. Bănărescu, R. Spolwind, Á. Harka & H. Waidbacher, 1998. Occurrence and distribution of three Gobiid species (Pisces: Gobiidae) in the middle and upper Danube region – example of different dispersal patterns? Biológia Bratislava 53: 665–678.Google Scholar
  3. Bij de Vaate, A., K. Jazdzewski, H. A. M. Ketelaars, S. Gollasch & G. Van der Velde, 2002. Quagga mussels Dreissena rostriformis bugensis (Andrusov, 1897) in the Main River (Germany). Aquatic Invasions 2: 261–264.Google Scholar
  4. Borcherding, J., S. Staas, S. Krueger, M. Ondračková, L. Šlapanský & P. Jurajda, 2011. Non-native Gobiid species in the lower River Rhine (Germany): recent range extensions and densities. Journal of Applied Ichthyology 27: 153–155.CrossRefGoogle Scholar
  5. Borcherding, J., M. Dolina, L. Heermann, P. Knutzen, S. Krüger, S. Matern, R. van Treeck & S. Gertzen, 2013. Feeding and niche differentiation in three invasive gobies in the Lower Rhine, Germany. Limnologica 43: 49–58.CrossRefGoogle Scholar
  6. Bush, A. O., K. D. Lafferty, J. M. Lotz & A. W. Shostak, 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83: 575–583.PubMedCrossRefGoogle Scholar
  7. Cone, R. S., 1989. The need to reconsider the use of condition indices in fishery sciences. Transactions of the American Fisheries Society 118: 510–514.CrossRefGoogle Scholar
  8. Emde, S., S. Rueckert, H. W. Palm & S. Klimpel, 2012. Invasive Ponto–Caspian amphipods and fish increase the distribution range of Acanthocephalan Pomphorhynchus tereticollis in the River Rhine. PLoS One 7(12): e53218.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Ergens, R. & J. Lom, 1970. Causative Agents of Parasitic Diseases in Fishes. Academia, Prague, (in Czech).Google Scholar
  10. Felsenstein, J., 1985. Phylogenies and the comparative method. American Naturalist 125: 1–15.CrossRefGoogle Scholar
  11. Francová, K., M. Ondračková, M. Polačik & P. Jurajda, 2011. Parasite fauna of native and non-native populations of Neogobius melanostomus (Pallas, 1814) (Gobiidae) in the longitudinal profile of the Danube River. Journal of Applied Ichthyology 27: 879–886.CrossRefGoogle Scholar
  12. Garland Jr, T., P. H. Harvey & A. R. Ives, 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41: 18–32.CrossRefGoogle Scholar
  13. Gendron, A. D., D. J. Marcogliese & M. Thomas, 2012. Invasive species are less parasitized than native competitors, but for how long? The case of round goby in the Great Lakes-St. Lawrence Basin. Biological Invasions 14: 367–384.CrossRefGoogle Scholar
  14. Gregory, R. D., A. E. Keymer & P. H. Harvey, 1996. Helminth parasite richness among vertebrates. Biodiversity Conservation 5: 985–997.CrossRefGoogle Scholar
  15. Hammer, R., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.Google Scholar
  16. Hurst, T. P., 2007. Causes and consequences of winter mortality in fishes. Journal of Fish Biology 71: 315–345.CrossRefGoogle Scholar
  17. Jude, D. J., R. H. Reider & G. R. Smith, 1992. Establishment of Gobiidae in the Great Lakes Basin. Canadian Journal of Fisheries and Aquatic Sciences 49: 416–421.CrossRefGoogle Scholar
  18. Kakacheva-Avramova, D., N. Margaritov & G. Grupcheva, 1978. Fish parasites in the Bulgarian stretch of the Danube River. In Russev, B & W. Naidenow (eds), Limnology of Bulgarian Stretch of the Danube River, BAS. Publishing House of the Bulgarian Academy of Sciences, Sofia: 250–271.Google Scholar
  19. Keane, R. M. & M. J. Crowley, 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution 17: 164–170.CrossRefGoogle Scholar
  20. Kornis, M. S., N. Mercado-Silva & M. J. Vander Zanden, 2012. Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. Journal of Fish Biology 80: 235–285.PubMedCrossRefGoogle Scholar
  21. Kvach, Y., 2005. A comparative analysis of helminth faunas and infection parameters of ten species of gobiid fishes (Actinopterygii: Gobiidae) from the north-western Black Sea. Acta Ichthyologica et Piscatoria 35: 103–110.Google Scholar
  22. Kvach, Y. & K. E. Skóra, 2006. Metazoa parasites of the invasive round goby Apollonia melanostoma (Neogobius melanostomus) (Pallas) (Gobiidae: Osteichthyes) in the Gulf of Gdansk, Baltic Sea, Poland: a comparison with the Black Sea. Parasitology Research 100: 767–774.PubMedCrossRefGoogle Scholar
  23. Kvach, Y. & C. Stepien, 2008. The invasive round goby Apollonia melanostoma (Actinopterygii: Gobiidae) – a new intermediate host of the trematode Neochasmus umbellus (Trematoda: Cryptogonimidae) in Lake Erie, Ohio, USA. Journal of Applied Ichthyology 24: 103–115.CrossRefGoogle Scholar
  24. Lively, C. M. & M. F. Dybdahl, 2000. Parasite adaptation to locally common host genotypes. Nature 405: 679–681.PubMedCrossRefGoogle Scholar
  25. MacLeod, C. J., A. M. Paterson, D. M. Tompkins & R. P. Runcán, 2010. Parasite lost – do invaders miss the boat or drown on arrival? Ecology Letters 13: 516–527.PubMedCrossRefGoogle Scholar
  26. Molnár, K., 2006. Some remarks on parasitic infections of the invasive Neogobius spp. (Pisces) in the Hungarian reaches of the Danube River, with a description of Goussia szekelyi sp. n. (Apicomplexa: Eimeriidae). Journal of Applied Ichthyology 22: 395–400.CrossRefGoogle Scholar
  27. Morand, S., 1997. Comparative analyses of continuous data: the need to be phylogenetically correct. In Grandcolas, P. (ed.), The Origin of Biodiversity in Insects: Phylogenetic Tests of Evolutionary Scenarios, Vol. 173. Mémoires du Muséum National Histoire Naturelle, Paris: 73–90.Google Scholar
  28. Mühlegger, J. M., F. Jirsa, R. Konecny & C. Frank, 2010. Parasites of Apollonia melanostoma (Pallas 1814) and Neogobius kessleri (Guenther 1861) (Osteichthyes, Gobiidae) from the Danube River in Austria. Journal of Helminthology 84: 87–92.PubMedCrossRefGoogle Scholar
  29. Muzzal, P. M., C. R. Peebles & M. V. Thomas, 1995. Parasites of the round goby, Neogobius melanostomus, and tubenose goby, Proterorhinus marmoratus (Perciformes: Gobiidae), from the St. Clair River and Lake St. Clair, Michigan. Journal of the Helminthological Society of Washington 62: 226–228.Google Scholar
  30. Ondračková, M., M. Dávidová, M. Pečínková, R. Blažek, M. Gelnar, Z. Valová, J. Černý & P. Jurajda, 2005. Metazoan parasites of Neogobius fishes in the Slovak section of the River Danube. Journal of Applied Ichthyology 21: 345–349.CrossRefGoogle Scholar
  31. Ondračková, M., T. Trichkova & P. Jurajda, 2006. Present and historical occurrence of metazoan parasites in Neogobius kessleri (Pisces: Gobiidae) in the Bulgarian section of the Danube River. Acta Zoologica Bulgarica 58: 399–406.Google Scholar
  32. Ondračková, M., M. Dávidová, R. Blažek, M. Gelnar & P. Jurajda, 2009. The interaction between an introduced fish host and local parasite fauna: Neogobius kessleri in the middle Danube River. Parasitology Research 105: 201–208.PubMedCrossRefGoogle Scholar
  33. Ondračková, M., K. Francová, M. Dávidová, M. Polačik & P. Jurajda, 2010. Condition status and parasite infection of Neogobius kessleri and Neogobius melanostomus (Gobiidae) in their native and non-native area of distribution of the Danube River. Ecological Research 25: 857–866.CrossRefGoogle Scholar
  34. Ondračková, M., A. Šimková, K. Civáňová, M. Vyskočilová & P. Jurajda, 2012. Parasite diversity and microsatellite variability in native and introduced populations of four Neogobius species (Gobiidae). Parasitology 139: 1493–1505.PubMedCrossRefGoogle Scholar
  35. Paterson, R. A., C. R. Townsend, D. M. Tompkins & R. Poulin, 2012. Ecological determinants of parasite acquisition by exotic fish species. Oikos 121: 1889–1895.CrossRefGoogle Scholar
  36. Polačik, M., M. Janáč, T. Trichkova, M. Vassilev, H. Keckeis & P. Jurajda, 2008. The distribution and abundance of the Neogobius fishes in their native range (Bulgaria) with notes on the non-native range in the Danube River. Large Rivers 18:193-208. Archiv für Hydrobiology (Large Rivers), Supplement 166.Google Scholar
  37. Poulin, R., 1995. Phylogeny, ecology, and the richness of parasite communities in vertebrates. Ecol Monographs 65: 283–302.CrossRefGoogle Scholar
  38. Poulin, R. & D. Mouillot, 2003. Host introductions and the geography of parasite taxonomic diversity. Journal of Biogeography 30: 837–845.CrossRefGoogle Scholar
  39. Prenter, J., C. MacNeil, J. T. A. Dick & A. M. Dunn, 2004. Roles of parasites in animal invasions. Trends in Ecology and Evolution 19: 385–390.PubMedCrossRefGoogle Scholar
  40. Pronin, N. M., G. W. Fleischer, D. R. Baldanova & S. V. Pronina, 1997. Parasites of the recently established round goby (Neogobius melanostomus) and tubenose goby (Proterorhinus marmoratus) (Cottidae) from the St. Clair River and Lake St. Clair, Michigan, USA. Folia Parasitologica 44: 1–6.PubMedGoogle Scholar
  41. Roche, D. G., B. Leung, E. F. Mendoza-Franco & M. E. Torchin, 2010. Higher parasite richness, abundance and impact in native versus introduced cichlid fishes. International Journal for Parasitology 40: 1525–1530.PubMedCrossRefGoogle Scholar
  42. RStudio, 2012. RStudio: integrated development environment for R (Version 0.96.122) [Computer software]. Boston, MA. Retrieved May 31, 2013, from http://www.rstudio.org/.
  43. Scharbert, A., 2009. Community patterns and recruitment of fish in a large temperate river floodplain – the significance of seasonally varying hydrological conditions and habitat availability. PhD-Thesis at the Zoological Institute, University of Cologne (Germany).Google Scholar
  44. Sures, B., K. Knopf, J. Würtz & J. Hirt, 1999. Richness and diversity of parasite communities in European eels Anguilla anguilla of the River Rhine, Germany, with special reference to helminth parasites. Parasitology 119: 323–330.PubMedCrossRefGoogle Scholar
  45. Stepien, C. A. & M. A. Tumeo, 2006. Invasion genetics of Ponto-Caspian gobies in the Great Lakes: a cryptic species, absence of founder effects, and comparative risk analysis. Biological Invasions 8: 61–78.CrossRefGoogle Scholar
  46. Torchin, M. E. & C. E. Mitchell, 2004. Parasites, pathogens, and invasions by plants and animals. Frontiers in Ecology and the Environment 2: 183–190.CrossRefGoogle Scholar
  47. Torchin, M. E., K. D. Lafferty, A. P. Dobson, V. J. McKenzie & A. M. Kuris, 2003. Introduced species and their missing parasites. Nature 421: 628–630.PubMedCrossRefGoogle Scholar
  48. Wiesner, C., 2005. New records of non-indigenous gobies (Neogobius sp.) in the Austrian Danube. Journal of Applied Ichthyology 21: 324–327.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Markéta Ondračková
    • 1
    Email author
  • Zdenka Valová
    • 1
  • Iveta Hudcová
    • 1
  • Veronika Michálková
    • 1
    • 2
  • Andrea Šimková
    • 2
  • Jost Borcherding
    • 3
  • Pavel Jurajda
    • 1
  1. 1.Institute of Vertebrate Biology AS CR, v.v.i.BrnoCzech Republic
  2. 2.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Zoological Institute, General Ecology and Limnology, Grietherbusch Ecological Research StationUniversity of CologneCologneGermany

Personalised recommendations