Hydrobiologia

, Volume 742, Issue 1, pp 27–38 | Cite as

Pilot acoustic tracking study on adult spiny lobsters (Palinurus mauritanicus) and spider crabs (Maja squinado) within an artificial reef

  • Guiomar Rotllant
  • Jacopo Aguzzi
  • David Sarria
  • Enric Gisbert
  • Valerio Sbragaglia
  • Joaquín Del Río
  • Carles G. Simeó
  • Antoni Mànuel
  • Erik Molino
  • Corrado Costa
  • Francisco Sardà
Primary Research Paper

Abstract

Artificial reef areas can be used for management and conservation of commercially exploited crustacean decapods but their behaviour in these environments is poorly characterised. Acoustic tags were used to study the behaviour of 3 adult spiny lobsters (Palinurus mauritanicus) and 3 adult spider crabs (Maja squinado) over a period of 64 days in summer, evaluating the use of artificial reef areas as suitable sites for re-stocking of overfished decapods. For this purpose, animals were released in a western Mediterranean artificial reef located at 20 m depth, close to a cabled seafloor observatory, which simultaneously recorded temperature, salinity, current direction, current speed and light intensity over the study period. Spiny lobsters lingered in the reef area, whereas the spider crabs left the area 21–45 h after release. These behavioural differences suggested that artificial reefs might be a good area to deploy adult lobsters for re-stocking purposes. The movements displayed by the lobsters during this experiment were not influenced by any of the measured environmental factors, whereas spider crab movements occurred against major current direction, when current speed was intense.

Keywords

Ultrasonic transmitters Crustaceans Artificial reef Re-stocking Environmental factors Cabled observatory 

References

  1. Abad, R., 2003. Reserva marina y pesca en la isla de Alborán (España). In Moreno, D. & A. Frías (eds), Actas de las I Jornadas sonre Reservas Marinas y I Reunión de la Red Iberoamericana de Reservas Marinas (RIRM). Ministerio de Agricultura, Pesca y Alimentación. Secretaría General Técnica, Cabo de Gata, Almería, 17–23 de septiembre de 2001: 47–54.Google Scholar
  2.  Aguzzi, J. & J. B. Company, 2010. Chronobiology of deep-water decapod crustaceans on continental margins. Advances in Marine Biology 58: 155–225.PubMedCrossRefGoogle Scholar
  3. Aguzzi, J., C. Costa, Y. Furushima, J. J. Chiesa, J. B. Company, P. Menesatti, R. Iwase & Y. Fujiwara, 2010. Behavioural rhythms of hydrocarbon seep fauna in relation to internal tides. Marine Ecology Progress Series 418: 47–56.CrossRefGoogle Scholar
  4. Aguzzi, J., A. Manuel, F. Condal, J. Guillen, M. Nogueras, J. del Rio, C. Costa, P. Menesatti, P. Puig, F. Sarda, D. Toma & A. Palanques, 2011. The new Seafloor Observatory (OBSEA) for remote and long-term coastal ecosystem monitoring. Sensors 11(6): 5850–5872.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Aguzzi, J., V. Sbragaglia, G. Santamaría, J. Del Río, F. Sardà, M. Nogueras & A. Manuel, 2013. Daily activity rhythms in temperate coastal fishes: insights from cabled observatory video monitoring. Marine Ecology Progress Series 486: 223–236.CrossRefGoogle Scholar
  6. Anonymous, 1999. Décret no 99-615 du 7 juillet 1999 portant publication des amendements aux annexes I, II III et IV de la convention relative à la conservation de la vie sauvage et du milieu naturel de l’Europe (ensemble quatre annexes) ouverte à la signature à Berne le 19 septembre 1979, adoptés à Strasbourg le 5 décembre 1997 JO No 164.Google Scholar
  7. Atkinson, L. J., S. Mayfield & A. C. Cockcroft, 2005. The potential for using acoustic tracking to monitor the movement of the West Coast rock lobster Jasus lalandii. African Journal of Marine Sciences 27(2): 401–408.CrossRefGoogle Scholar
  8. Bell, M. C., D. R. Eaton, R. C. A. Bannister & J. T. Addison, 2003. A mark-recapture approach to estimating population density from continuous trapping data: application to edible crabs, Cancer pagurus, on the east coast of England. Fisheries Research 65(1–3): 361–378.CrossRefGoogle Scholar
  9. Bell, J. D., D. M. Bartley, K. Lorenzen & N. R. Loneragan, 2006. Restocking and stock enhancement of coastal fisheries: potential, problems and progress. Fisheries Research 80(1): 1–8.CrossRefGoogle Scholar
  10. Bertelsen, R. D., 2013. Characterizing daily movements, nomadic movements, and reproductive migrations of Panulirus argus around the Western Sambo Ecological Reserve (Florida, USA) using acoustic telemetry. Fisheries Research 144: 91–102.CrossRefGoogle Scholar
  11. Booth, J. D., 1997. Long-distance movements in Jasus spp. and their role in larval recruitment. Bulletin of Marine Science 61(1): 111–128.Google Scholar
  12. Bussani, M. & A. M. Zuder, 1977. Immisione di Maia squinado (Herbst) fiel golfo di Trieste. Rep Mar Park Miramare Trieste 6: 25–28.Google Scholar
  13. Camus, P., 1983. Resultats d’une operation de marquage d’araignee de mer (Maia squinado, Herbest) adult en baie d’Audierne (Bretagne Sud). ICES Shellfish Communication, CM. vol K: 29, 11.Google Scholar
  14. Clark, M. E., T. G. Wolcott, D. L. Wolcott & A. H. Hines, 1999. Foraging and agonistic activity co-occur in free-ranging blue crabs (Callinectes sapidus): observation of animals by ultrasonic telemetry. Journal of Experimental Marine Biology and Ecology 233(1): 143–160.Google Scholar
  15. Comeau, L. A., R. Sonier & J. M. Hanson, 2012. Seasonal movements of Atlantic rock crab (Cancer irroratus Say) transplanted into a mussel aquaculture site. Aquaculture Research 43(4): 509–517.CrossRefGoogle Scholar
  16. Condal, F., J. Aguzzi, F. Sardà, M. Nogueras, J. Cadena, C. Cosat, J. Del Río & A. Mànuel, 2013. Seasonal rhythm in a Mediterranean coastal fish community as monitored by a cabled observatory. Marine Biology 159: 2809–2817.CrossRefGoogle Scholar
  17. Corgos, A., C. Bernardez, P. Sampedro, P. Verisimo & J. Freire, 2011. Spatial structure of the spider crab, Maja brachydactyla population: evidence of metapopulation structure. Journal of Sea Research 66(1): 9–19.CrossRefGoogle Scholar
  18. Davis, J. L. D., A. C. Young-Williams, R. Aguilar, B. L. Carswell, M. R. Goodison, A. H. Hines, M. A. Kramer, Y. Zohar & O. Zmora, 2004. Differences between hatchery-raised and wild blue crabs: implications for stock enhancement potential. Transactions of the American Fisheries Society 133(1): 1–14.CrossRefGoogle Scholar
  19. Davis, J. L. D., M. G. Eckert-Mills, A. C. Young-Williams, A. H. Hines & Y. Zohar, 2005. Morphological conditioning of a hatchery-raised invertebrate, Callinectes sapidus, to improve field survivorship after release. Aquaculture 243(1–4): 147–158.CrossRefGoogle Scholar
  20. Durán, J., E. Pastor, A. Grau & J. M. Valencia, 2012. First results of embryonic development, spawning and larval rearing of the Mediterranean spider crab Maja squinado (Herbst 1788) under laboratory conditions, a candidate species for a restocking program. Aquaculture Research 43: 1777–1786.CrossRefGoogle Scholar
  21. Freire, J., E. González-Gurriarán & C. Bernárdez, 1999. Migratory patterns in the spider crab Maja squinado using telemetry and electronic tags. ICES CM 1999/AA 14: 1–11.Google Scholar
  22. Giacalone, V. M., G. D’Anna, C. Pipitone & F. Badalamenti, 2006. Movements and residence time of spiny lobsters, Palinurus elephas released in a marine protected area: an investigation by ultrasonic telemetry. Journal of the Marine Biological Association of the United Kingdom 86(5): 1101–1106.CrossRefGoogle Scholar
  23. Gonzalez-Gurriaran, E. & J. Freire, 1994. Movement patterns and habitat utilization in the spider crab Maja squinado (Herbst) (Decapoda, Majidae) measured by ultrasonic telemetry. Journal of Experimental Marine Biology and Ecology 184(2): 269–291.CrossRefGoogle Scholar
  24. Gonzalez-Gurriaran, E., J. Freire & C. Bernardez, 2002. Migratory patterns of female spider crabs Maja squinado detected using electronic tags and telemetry. Journal of Crustacean Biology 22(1): 91–97.CrossRefGoogle Scholar
  25. Goñi, R. & D. Latrouite, 2005. Review of the biology, ecology and fisheries of Palinurus spp. species of European waters: Palinurus elephas (Fabricius, 1787) and Palinurus mauritanicus (Gruvel, 1911). Cahiers de Biologie Marine 46(2): 127–142.Google Scholar
  26. Goñi, R., O. Reñones & A. Quetglas, 2001. Dynamics of a protected Western Mediterranean population of the European spiny lobster Palinurus elephas (Fabricius, 1787) assessed by trap surveys. Marine and Freshwater Research 52(8): 1577–1587.CrossRefGoogle Scholar
  27. Groeneveld, J. C., 2002. Long-distance migration of the rock lobster Palinurus delagoae off South Africa and Mozambique. South African Journal of Marine Science 24: 395–400.CrossRefGoogle Scholar
  28. Groeneveld, J. C. & G. M. Branch, 2002. Long-distance migration of South African deep-water rock lobster Palinurus gilchristi. Marine Ecology Progress Series 232: 225–238.CrossRefGoogle Scholar
  29. Guerra-Castro, E., C. A. Carmona-Suárez & J. E. Conde, 2007. Activity patterns and zonation of the swimming crabs Arenaeus cribrarius and Callinectes ornatus. Journal of Crustacean Biology 27(1): 49–58.CrossRefGoogle Scholar
  30. Guerao, G., E. Pastor, J. Martin, M. Andres, A. Estevez, A. Grau, J. Duran & G. Rotllant, 2008. The larval development of Maja squinado and M. brachydactyla (Decapoda, Brachyura, Majidae) described from plankton collected and laboratory-reared material. Journal of Natural History 42(33–34): 2257–2276.CrossRefGoogle Scholar
  31. Guerao, G. & G. Rotllant, 2010. Development and growth of the early juveniles of the spider crab Maja squinado (Brachyura: Majoidea) in an individual culture system. Aquaculture 307(1–2): 105–110.CrossRefGoogle Scholar
  32. Hall, S. J., D. J. Basford, M. R. Robertson, D. G. Raffaelli & I. Tuck, 1991. Patterns of recolonisation and the importance of pit-digging by the crab Cancer pagurus in a subtidal sand habitat. Marine Ecology Progress Series 72: 93–102.CrossRefGoogle Scholar
  33. Herrnkind, W. F., 1980. Spiny lobsters: patterns of movement. In Cobb, J. S. & B. F. Phillip (eds), The Biology and Management of Lobsters, Vol. 1., Physiology and Behavior Academic Press, New York: 349–407.CrossRefGoogle Scholar
  34. Hines, A. H., T. G. Wolcott, E. Gonzalez-Gurriaran, J. L. Gonzalez-Escalante & J. Freire, 1995. Movement patterns and migrations in crabs – telemetry of juvenile and adult behavior in Callinectes sapidus and Maja squinado. Journal of the Marine Biological Association of the United Kingdom 75(1): 27–42.CrossRefGoogle Scholar
  35. Holsman, K. K., P. S. McDonald & D. A. Armstrong, 2006. Intertidal migration and habitat use by subadult Dungeness crab Cancer magister in a NE Pacific estuary. Marine Ecology Progress Series 308: 183–195.CrossRefGoogle Scholar
  36. Hunter, E., 1999. Biology of the European spiny lobster, Palinurus elephas (Fabricius, 1787) (Decapoda, Palinuridea). Crustaceana 72: 545–565.CrossRefGoogle Scholar
  37. Hyland, S. J., B. J. Hill & C. P. Lee, 1984. Movement within and between different habitats by the portunid crab Scylla serrata. Marine Biology 80(1): 57–61.CrossRefGoogle Scholar
  38. Jensen, A., J. Wickins & C. Bannister, 2000. The potential use of artificial reefs to enhance lobster habitat. In Jensen, A. C., K. J. Collins & A. P. M. Lockwood (eds), Artificial Reefs in European Seas. Kluwer Academic Publishers, Dordretch: 379–401.CrossRefGoogle Scholar
  39. Jernakoff, P. & B. F. Phillipis, 1988. Effect of a baited trap on the foraging movements of juvenile western rock lobsters, Panulirus cygnus George. Australian Journal of Marine and Freshwater Research 39: 185–192.CrossRefGoogle Scholar
  40. Johnson, E. G., A. C. Young, A. H. Hines, M. A. Kramer, M. Bademan, M. R. Goodison & R. Aguilar, 2011. Field comparison of survival and growth of hatchery-reared versus wild blue crabs, Callinectes sapidus Rathbun. Journal of Experimental Marine Biology and Ecology 402(1–2): 35–42.CrossRefGoogle Scholar
  41. Kelly, S., 2001. Temporal variation in the movement of the spiny lobster Jasus edwardsii. Marine and Freshwater Research 52(3): 323–331.CrossRefGoogle Scholar
  42. Kelly, S. & A. B. MacDiarmid, 2003. Movement patterns of mature spiny lobsters, Jasus edwardsii, from a marine reserve. New Zealand Jornal of Marine and Freshwater Research 37(1): 149–158.CrossRefGoogle Scholar
  43. Kelly, S., D. Scott, A. B. MacDiarmid & R. C. Babcock, 2000. Spiny lobster, Jasus edwardsii, recovery in New Zealand marine reserves. Biological Conservation 92(3): 359–369.CrossRefGoogle Scholar
  44. Latrouite, D. & D. Le Foll, 1989. Donnees sur les migrations des crabes tourteau Cancer pagurus et les araignees de mer Maia squinado. Oceanis 15: 133–142.Google Scholar
  45. Latrouite, D., Y. Desaunay, H. De Pontual, H. Troadec, P. Lorance, F. Galgani, P. Bordalo Machado, G. Bavouzet, P. Noel, G. Veron, P. Danel & O. Dugornay, 1999. Compte-rendu de la campagne OBSERVHAL98 – Observations à finalité halieutique.Google Scholar
  46. Le Foll, D., 1993. Biologie et exploitation de l’araignee de mer Maja squinado Herbest en Manche ouest Rapport Interne de la Direction des ressources Vivantes, Vol. 93.030. IFREMER, Brest: 517.Google Scholar
  47. Lebata, M., L. Le Vay, M. E. Walton, J. B. Binas, E. T. Quinitio, E. M. Rodriguez & J. H. Primavera, 2009. Evaluation of hatchery-based enhancement of the mud crab, Scylla spp., fisheries in mangroves: comparison of species and release strategies. Marine and Freshwater Research 60(1): 58–69.CrossRefGoogle Scholar
  48. Linnane, A., W. Dimmlich & T. Ward, 2005. Movement patterns of the southern rock lobster, Jasus edwardsii, off South Australia. New Zealand Journal of Marine and Freshwater Research 39: 335–346.CrossRefGoogle Scholar
  49. MacArthur, L. D., R. C. Babcock & G. A. Hyndes, 2008. Movements of the western rock lobster (Panulirus cygnus) within shallow coastal waters using acoustic telemetry. Marine and Freshwater Research 59: 603–613.CrossRefGoogle Scholar
  50. MacDiarmid, A. B., 1991. Seasonal changes in depth distribution, sex ratio and size frequency of spiny lobster Jasus edwardsii on a coastal reef in northern New Zealand. Marine Ecology Progress Series 70: 129–141.CrossRefGoogle Scholar
  51. McGarvey, R., 2004. Estimating the emigration rate of fish stocks from marine sanctuaries using tag-recovery data. Fishery Bulletin 102(3): 464–472.Google Scholar
  52. Nonaka, M., H. Fushimi & T. Yamakawa, 2000. The spiny lobster fishery on Japan and stocking. In Phillips, B. F. & J. Kittaka (eds), Spiny Lobsters: Fisheries and Culture, 2nd ed. Fishing News Books (Blackwell), Oxford: 221–242.CrossRefGoogle Scholar
  53. Okamoto, K., 2004. Juvenile release and market size recapture of the swimming crab Portunus trituberculatus (Miers) marked with coded wire tags. In Leber, K. M., S. Kitada, H. L. Blankenship & T. Svasand (eds), Stock Enhancement and Sea Ranching: Developments, Pitfalls and Opportunities. Blackwell Publishing Ltd., Oxford: 181–186.CrossRefGoogle Scholar
  54. Revenga, S., F. Fernández, J. L. González & E. Santaella, 2000. Artificial reefs in Spain: the regulatory framework. In Jensen, A. C., K. J. Collins & A. P. M. Lockwood (eds), Artificial Reefs in European seas. Kluwer Academic Publishers, Dordretch: 185–194.CrossRefGoogle Scholar
  55. Rotllant, G., G. Guerao, N. Gras & A. Estevez, 2014. Growth and biochemical composition during larval and molting stages of the spider crab, Maja squinado (Decapoda: Majidae). Aquatic Biology 20: 13–21.CrossRefGoogle Scholar
  56. Sardà, F. & P. Martin, 1986. Les pesqueries a Catalunya: evolució en els últims quatre decenis. In Demestre, M., J. Lleonart, P. Martin, J. A. Peitx & F. Sardà (eds), L’oceanografia Recursos pesquers de la mar catalana, Vol. 9. Diputació de Barcelona, Barcelona: 91–112.Google Scholar
  57. Sherry, A. & R. K. Henson, 2005. Conducting and interpreting canonical correlation analysis in personality research: a user-friendly primer. Journal of Personality Assessment 84(1): 37–48.PubMedCrossRefGoogle Scholar
  58. Spanier, E., M. Tom, S. Pisanty & G. Almog, 1988. Seasonality and shelter selection by the slipper lobster Scyllarides latus in the south-eastern Mediterranean. Marine Ecology Progress Series 42: 247–255.CrossRefGoogle Scholar
  59. Stevcic, Z., 1967. A short outline of the biology of the spinous spider crab. Bulletin Scientifiques, Consiel Academies des Sciences de la R.S.F. de Yougoslavie. Section A Sciences 12: 313–314.Google Scholar
  60. Stevcic, Z., 1973. Les migrations de l’ Araignée de mer. Rapports de la Commision International de la Mer Méditerranée 21: 597–598.Google Scholar
  61. Stevcic, Z., 1977. Contribution to the knowledge of the reproduction of the spider crab (Maja squinado). Rapp P-V Reun, Commission Internationale pour l’Exploration Scientifique de la Méditerranée, Monaco 24(4): 177–178.Google Scholar
  62. Ungfors, A., H. Hallback & P. G. Nilsson, 2007. Movement of adult edible crab (Cancer pagurus L.) at the Swedish West Coast by mark-recapture and acoustic tracking. Fisheries Research 84(3): 345–357.CrossRefGoogle Scholar
  63. Ut, V. N., L. Le Vay, T. T. Nghia & M. Walton, 2007. Comparative performance of hatchery-reared and wild Scylla paramamosain (Estampador, 1949) in pond culture. Aquaculture Research 38(14): 1593–1599.CrossRefGoogle Scholar
  64. Webley, J. A. C. & R. M. Connolly, 2007. Vertical movement of mud crab megalopae (Scylla serrata) in response to light: doing it differently down under. Journal of Experimental Marine Biology and Ecology 341(2): 196–203.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guiomar Rotllant
    • 1
  • Jacopo Aguzzi
    • 1
    • 5
  • David Sarria
    • 2
    • 5
  • Enric Gisbert
    • 3
  • Valerio Sbragaglia
    • 1
    • 5
  • Joaquín Del Río
    • 2
    • 5
  • Carles G. Simeó
    • 2
    • 3
  • Antoni Mànuel
    • 2
    • 5
  • Erik Molino
    • 2
    • 5
  • Corrado Costa
    • 4
  • Francisco Sardà
    • 1
    • 5
  1. 1.Institut de Ciències del Mar (ICM-CSIC)BarcelonaSpain
  2. 2.Electronics Department, Technological Development Centre for Remote Acquisition and Data Processing Systems (SARTI)Universitat Politécnica de Catalunya (UPC)Vilanova i la GeltrúSpain
  3. 3.Unitat Operativa de Cultius ExperimentalsIRTATarragonaSpain
  4. 4.Unità di ricerca per l’ingegneria agrariaConsiglio per la Ricerca e la sperimentazione in AgricolturaMonterotondo ScaloItaly
  5. 5.Associated UnitTecnoterraLisbonPortugal

Personalised recommendations