Advertisement

Hydrobiologia

, Volume 740, Issue 1, pp 231–251 | Cite as

Trophic state evaluation after urban loads diversion in a eutrophic coastal lagoon (Óbidos Lagoon, Portugal): a modeling approach

  • Madalena S. Malhadas
  • M. D. Mateus
  • D. Brito
  • R. Neves
Primary Research Paper

Abstract

Óbidos Lagoon is classified as a sensible system according to the eutrophication criteria in the Portuguese Decree-Law 149/2004, which transpose the standards of Urban Waste Water Treatment Directive (Council Directive 91/271/EEC) concerning urban waste water treatment. From September 2005 onwards, the urban loads of five Waste Water Treatment Plant (WWTP) were deviated to a submarine outfall to prevent water degradation and improve the lagoon trophic state (LTS). This paper evaluated the LTS after urban loads diversion, testing the hypothesis behind the management decision. First, the loads reaching the lagoon were determined with the Harp-Nut guidelines and watershed modeling. Then, the water quality in the lagoon was simulated with a hydro-ecological model and compared with measured data. Finally, management scenarios corresponding to nutrient loads reduction were tested to determine hypothesis-driven LTS. Results showed that the loads from pig farms should be diverted instead of the WWTP, to improve the LTS and achieve a “Good/Bad” status. The proposed method stresses the importance of integrated modeling tools in the Water Framework Directive, given their skill in testing various hypothesis, and ultimately ruling out inadequate management decisions before implementation.

Keywords

Trophic state Hydro-ecological modeling Urban loads Pig farms Water Framework Directive Óbidos Lagoon 

Notes

Acknowledgements

This work had the financial support of Águas do Oeste S.A, as part of the project “Monitoring and modeling the Óbidos lagoon and Foz do Arelho submarine outfall”.

References

  1. Amatya, D. M., M. K. Jha, T. M. Williams, A. E. Edwards & D. R. Hitchcock, 2013. SWAT model prediction of phosphorus loading in a South Carolina karst watershed with a downstream embayment. Journal of Environmental Protection 4: 75–90.CrossRefGoogle Scholar
  2. Arnold, J. G., P. M. Allen & G. Bernhardt, 1993. A comprehensive surface-groundwater flow model. Journal of Hydrology 142(1–4): 47–69.CrossRefGoogle Scholar
  3. Azzellino, A., M. Carpani, S. Çevirgen, C. Giupponi, P. Parati, F. Ragusa & R. Salvetti, 2013. Managing the nutrient loads of the Venice Lagoon watershed: are the loads external to the watershed relevant under the WFD River Basin District framework? Journal of Coastal Research 65: 25–30.Google Scholar
  4. Bendoricchio, G. & G. De Boni, 2005. A water-quality model for the Lagoon of Venice, Italy. Ecological Modelling 184(1): 69–81.CrossRefGoogle Scholar
  5. Borowski, I. & M. Hare, 2007. Exploring the gap between water managers and researchers: difficulties of model-based tools to support practical water management. Water Resources Management 21(7): 1049–1074.CrossRefGoogle Scholar
  6. Cabecadas, G., M. Nogueira & M. J. Brogueira, 1999. Nutrient dynamics and productivity in three European estuaries. Marine Pollution Bulletin 38(12): 1092–1096.CrossRefGoogle Scholar
  7. Carvalho, S., A. Moura, M. B. Gaspar, P. Pereira, L. C. da Fonseca, M. Falcao, T. Drago, F. Leitao & J. Regala, 2005. Spatial and inter-annual variability of the macrobenthic communities within a coastal lagoon (Óbidos Lagoon) and its relationship with environmental parameters. Acta Oecologica 27(3): 143–159.CrossRefGoogle Scholar
  8. Carvalho, S., M. B. Gaspar, A. Moura, C. Vale, P. Antunes, O. Gil, L. C. da Fonseca & M. Falcao, 2006. The use of the marine biotic index AMBI in the assessment of the ecological status of the Óbidos Lagoon (Portugal). Marine Pollution Bulletin 52(11): 1414–1424.PubMedCrossRefGoogle Scholar
  9. Cloern, J. E., 1996. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics 34(2): 127–168.CrossRefGoogle Scholar
  10. Cloern, J. E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.CrossRefGoogle Scholar
  11. Cobelo-Garcia, A., P. Bernardez, M. Leira, D. E. Lopez-Sanchez, J. Santos-Echeandia, R. Prego & M. Perez-Arlucea, 2012. Temporal and diel cycling of nutrients in a barrier-lagoon complex: implications for phytoplankton abundance and composition. Estuarine Coastal and Shelf Science 110: 69–76.CrossRefGoogle Scholar
  12. de Kok, J. L., S. Kofalk, J. Berlekamp, B. Hahn & H. Wind, 2009. From design to application of a decision-support system for integrated river-basin management. Water Resources Management 23(9): 1781–1811.CrossRefGoogle Scholar
  13. Domingues, R. B., A. Barbosa & H. Galvao, 2005. Nutrients, light and phytoplankton succession in a temperate estuary (the Guadiana, south-western Iberia). Estuarine Coastal and Shelf Science 64(2–3): 249–260.CrossRefGoogle Scholar
  14. Druschel, G. K., A. Hartmann, R. Lomonaco & K. Oldrid, 2005. Determination of sediment phosphorus concentrations in St. Albans Bay, Lake Champlain: Assessment of internal loading and seasonal variations of phosphorus sediment-water column cycling. Report to the Vermont Agency of natural resources, 71 p.Google Scholar
  15. Duarte, P., B. Azevedo, M. Guerreiro, C. Ribeiro, R. Bandeira, A. Pereira, M. Falcao, D. Serpa & J. Reia, 2008. Biogeochemical modelling of Ria Formosa (South Portugal). Hydrobiologia 611: 115–132.CrossRefGoogle Scholar
  16. EEB, 2001. Handbook on EU Water Policy Under the Water Framework Directive. European Environmental Bureau, Brussels.Google Scholar
  17. EPA, 1985. Rates, Constants, and Kinetics Formulations in Surface Water-Quality Modeling. US Environmental Protection Agency, Athens.Google Scholar
  18. Fohrer, N., S. Haverkamp, K. Eckhardt & H. G. Frede, 2001. Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth, Part B 26(7–8): 577–582.CrossRefGoogle Scholar
  19. Fransz, H. G., J. P. Mommaerts & G. Radach, 1991. Ecological modeling of the North-Sea. Netherlands Journal of Sea Research 28(1–2): 67–140.CrossRefGoogle Scholar
  20. Gikas, G. D., T. Yiannakopoulou & V. A. Tsihrintzis, 2006. Water quality trends in a coastal lagoon impacted by non-point source pollution after implementation of protective measures. Hydrobiologia 563: 385–406.CrossRefGoogle Scholar
  21. Gle, C., Y. Del Amo, B. Sautour, P. Laborde & P. Chardy, 2008. Variability of nutrients and phytoplankton primary production in a shallow macrotidal coastal ecosystem (Arcachon Bay, France). Estuarine Coastal and Shelf Science 76(3): 642–656.CrossRefGoogle Scholar
  22. Heinz, I., M. Pulido-Velazquez, J. R. Lund & J. Andreu, 2007. Hydro-economic modeling in river basin management: implications and applications for the European Water Framework Directive. Water Resources Management 21(7): 1103–1125.CrossRefGoogle Scholar
  23. IST/IPIMAR, 2010. Variação sazonal e inter-annual da qualidade da água na Lagoa de Óbidos, seus afluentes e emissário submarino da Foz do Arelho. Relatório Final: Outubro 2004–Janeiro 2008 (in Portuguese). IST/IPIMAR, Lisboa.Google Scholar
  24. Konstantinou, Z. I., Y. N. Krestenitis, D. Latinopoulos, K. Pagou, S. Galinou-Mitsoudi & Y. Savvidis, 2012. Aspects of mussel-farming activity in Chalastra, Thermaikos Gulf, Greece: an effort to untie a management Gordian Knot. Ecology and Society 17(1): 1.CrossRefGoogle Scholar
  25. Korfmacher, K. S., 1998. Water quality modeling for environmental management: lessons from the policy sciences. Policy Sciences 31(1): 35–54.CrossRefGoogle Scholar
  26. Krause, S., A. L. Heathwaite, F. Miller, P. Hulme & A. Crowe, 2007. Groundwater-dependent wetlands in the UK and Ireland: controls, functioning and assessing the likelihood of damage from human activities. Water Resources Management 21(12): 2015–2025.CrossRefGoogle Scholar
  27. La Jeunesse, I., J. M. Deslous-Paoli, M. C. Ximénès, J. P. Cheylan, C. Mende, C. Borrero & L. Scheyer, 2002. Changes in point and non-point sources phosphorus loads in the Thau catchment over 25 years (Mediterranean Sea – France). Hydrobiologia 475–476(1): 403–411.CrossRefGoogle Scholar
  28. Le Provost, C., F. Lyard, J. M. Molines, M. L. Genco & F. Rabilloud, 1998. A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set. Journal of Geophysical Research: Oceans 103(C3): 5513–5529.CrossRefGoogle Scholar
  29. Leitão, P., H. Coelho, A. Santos & R. Neves, 2005. Modelling the main features of the Algarve coastal circulation during July 2004: a downscaling approach. Journal of Atmospheric & Ocean Science 10(4): 421–462.CrossRefGoogle Scholar
  30. Li, Q. P., P. J. S. Franks, M. R. Landry, R. Goericke & A. G. Taylor, 2010. Modeling phytoplankton growth rates and chlorophyll to carbon ratios in California coastal and pelagic ecosystems. Journal of Geophysical Research 115: G04003.Google Scholar
  31. Lillebo, A. I., J. M. Neto, M. R. Flindt, J. C. Marques & M. A. Pardal, 2004. Phosphorous dynamics in a temperate intertidal estuary. Estuarine Coastal and Shelf Science 61(1): 101–109.CrossRefGoogle Scholar
  32. Lillebo, A. I., M. Valega, M. Otero, M. A. Pardal, E. Pereira & A. C. Duarte, 2010. Daily and inter-tidal variations of Fe, Mn and Hg in the water column of a contaminated salt marsh: halophytes effect. Estuarine Coastal and Shelf Science 88(1): 91–98.CrossRefGoogle Scholar
  33. Lopes, C. B., A. I. Lillebo, J. M. Dias, E. Pereira, C. Vale & A. C. Duarte, 2007. Nutrient dynamics and seasonal succession of phytoplankton assemblages in a Southern European Estuary: Ria de Aveiro, Portugal. Estuarine Coastal and Shelf Science 71(3–4): 480–490.CrossRefGoogle Scholar
  34. Lopes, J. F., C. I. Silva & A. C. Cardoso, 2008. Validation of a water quality model for the Ria de Aveiro lagoon, Portugal. Environmental Modelling & Software 23(4): 479–494.CrossRefGoogle Scholar
  35. Malhadas, M. S., P. C. Leitao, A. Silva & R. Neves, 2009a. Effect of coastal waves on sea level in Óbidos Lagoon, Portugal. Continental Shelf Research 29(9): 1240–1250.CrossRefGoogle Scholar
  36. Malhadas, M. S., A. Silva, P. C. Leitao & R. Neves, 2009b. Effect of the bathymetric changes on the hydrodynamic and residence time in Óbidos Lagoon (Portugal). Journal of Coastal Research SI(56): 549–553.Google Scholar
  37. Malhadas, M., R. Neves, P. Leitão & A. Silva, 2010. Influence of tide and waves on water renewal in Óbidos Lagoon, Portugal. Ocean Dynamics 60(1): 41–55.CrossRefGoogle Scholar
  38. Martins, F., P. Leitao, A. Silva & R. Neves, 2001. 3D modelling in the Sado estuary using a new generic vertical discretization approach. Oceanologica Acta 24: S51–S62.CrossRefGoogle Scholar
  39. Martins, F., P. Pina, S. Calado, S. Delgado & R. Neves, 2003. A coupled hydrodynamic and ecological model to manage water quality in Ria Formosa coastal lagoon. Advances in Ecological Sciences 1819: 93–100.Google Scholar
  40. Mateus, M., P. C. Leitão, H. de Pablo & R. Neves, 2012a. Is it relevant to explicitly parameterize chlorophyll synthesis in marine ecological models? Journal of Marine Systems 94: S23–S33.CrossRefGoogle Scholar
  41. Mateus, M., G. Riflet, P. Chambel, L. Fernandes, R. Fernandes, M. Juliano, F. Campuzano, H. de Pablo & R. Neves, 2012b. An operational model for the West Iberian coast: products and services. Ocean Science 8(4): 713–732.CrossRefGoogle Scholar
  42. Mateus, M., N. Vaz & R. Neves, 2012c. A process-oriented model of pelagic biogeochemistry for marine systems. Part II: Application to a mesotidal estuary. Journal of Marine Systems 94(Supplement): S90–S101.CrossRefGoogle Scholar
  43. Metcalf & Eddy, 2003. Wastewater Engineering: Treatment and Reuse, 4th ed. McGraw-Hill, New York.Google Scholar
  44. Oliveira, A., A. B. Fortunato & F. E. P. Sancho, 2005. Morphodynamic modeling of the Óbidos Lagoon. Coastal Engineering 2004(1–4): 2506–2518.Google Scholar
  45. Oliveira, A., A. B. Fortunato & J. R. L. Rego, 2006. Effect of morphological changes on the hydrodynamics and flushing properties of the Óbidos Lagoon (Portugal). Continental Shelf Research 26(8): 917–942.CrossRefGoogle Scholar
  46. Painting, S. J., M. J. Devlin, S. J. Malcolm, E. R. Parker, D. K. Mills, C. Mills, P. Tett, A. Wither, J. Burt, R. Jones & K. Winpenny, 2007. Assessing the impact of nutrient enrichment in estuaries: susceptibility to eutrophication. Marine Pollution Bulletin 55(1–6): 74–90.PubMedCrossRefGoogle Scholar
  47. Penn, M. R., M. T. Auer, S. M. Doerr, C. T. Driscoll, C. M. Brooks & S. W. Effler, 2000. Seasonality in phosphorus release rates from the sediments of a hypereutrophic lake under a matrix of pH and redox conditions. Canadian Journal of Fisheries and Aquatic Sciences 57(5): 1033–1041.CrossRefGoogle Scholar
  48. Pereira, P., H. de Pablo, C. Vale, V. Franco & M. Nogueira, 2009a. Spatial and seasonal variation of water quality in an impacted coastal lagoon (Óbidos Lagoon, Portugal). Environmental Monitoring and Assessment 153(1–4): 281–292.PubMedCrossRefGoogle Scholar
  49. Pereira, P., H. de Pablo, C. Vale, F. Rosa-Santos & R. Cesario, 2009b. Metal and nutrient dynamics in a eutrophic coastal lagoon (Óbidos, Portugal): the importance of observations at different time scales. Environmental Monitoring and Assessment 158(1–4): 405–418.PubMedCrossRefGoogle Scholar
  50. Pereira, P., H. de Pablo, S. Carvalho, C. Vale & M. Pacheco, 2010. Daily availability of nutrients and metals in a eutrophic meso-tidal coastal lagoon (Óbidos Lagoon, Portugal). Marine Pollution Bulletin 60(10): 1868–1872.PubMedCrossRefGoogle Scholar
  51. Pereira, P., H. de Pablo, M. D. Subida, C. Vale & M. Pacheco, 2011. Bioaccumulation and biochemical markers in feral crab (Carcinus maenas) exposed to moderate environmental contamination – the impact of non-contamination-related variables. Environmental Toxicology 26(5): 524–540.PubMedCrossRefGoogle Scholar
  52. Pereira, P., M. J. Botelho, M. T. Cabrita, C. Vale, M. T. Moita & C. Goncalves, 2012a. Winter–summer nutrient composition linkage to algae-produced toxins in shellfish at a eutrophic coastal lagoon (Óbidos Lagoon, Portugal). Estuarine Coastal and Shelf Science 112: 61–72.CrossRefGoogle Scholar
  53. Pereira, P., S. Carvalho, F. Pereira, H. de Pablo, M. B. Gaspar, M. Pacheco & C. Vale, 2012b. Environmental quality assessment combining sediment metal levels, biomarkers and macrobenthic communities: application to the Óbidos coastal lagoon (Portugal). Environmental Monitoring and Assessment 184(12): 7141–7151.PubMedCrossRefGoogle Scholar
  54. Perkins, R. G. & G. J. C. Underwood, 2001. The potential for phosphorus release across the sediment-water interface in an eutrophic reservoir dosed with ferric sulphate. Water Research 35(6): 1399–1406.PubMedCrossRefGoogle Scholar
  55. Petticrew, E. L. & J. M. Arocena, 2001. Evaluation of iron-phosphate as a source of internal lake phosphorus loadings. Science of the Total Environment 266(1–3): 87–93.PubMedCrossRefGoogle Scholar
  56. Pina, P., 2001. An Integrated Approach to Study. The Tagus Estuary Water Quality. M.Sc. Thesis, Superior Técnico, Universidade Técnica de Lisboa.Google Scholar
  57. Portela, L. I., 1996. Mathematical modelling of hydrodynamic processes and water quality in Tagus estuary. Ph.D. Thesis, Universidade Técnica de Lisboa, Instituto Superior Técnico.Google Scholar
  58. Reungsang, P., R. Kanwar, M. Jha, P. W. Gassman, K. Ahmad & S. Saleh, 2005. Calibration and Validation of SWAT for the Upper Maquoketa River Watershed – Working Paper 05-WP 396. Center for Agricultural and Rural Development, Iowa State University, Ames, Iowa.Google Scholar
  59. Sanchez-Avila, J., J. Bonet, G. Velasco & S. Lacorte, 2009. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant. Science of the Total Environment 407(13): 4157–4167.PubMedCrossRefGoogle Scholar
  60. Sanchez-Avila, J., R. Tauler & S. Lacorte, 2012. Organic micropollutants in coastal waters from NW Mediterranean Sea: sources distribution and potential risk. Environment International 46: 50–62.PubMedCrossRefGoogle Scholar
  61. Santhi, C., R. Srinivasan, J. G. Arnold & J. R. Williams, 2006. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environmental Modelling & Software 21(8): 1141–1157.CrossRefGoogle Scholar
  62. Saraiva, S., P. Pina, F. Martins, M. Santos, F. Braunschweig & R. Neves, 2007. Modelling the influence of nutrient loads on Portuguese estuaries. Hydrobiologia 587: 5–18.CrossRefGoogle Scholar
  63. Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arresø, Denmark. Hydrobiologia 228(1): 91–99.CrossRefGoogle Scholar
  64. Stybel, N., C. Fenske & G. Schernewski, 2009. Mussel cultivation to improve water quality in the Szczecin Lagoon. Journal of Coastal Research 56: 1459–1463.Google Scholar
  65. Thieu, V., J. Garnier & G. Billen, 2010. Assessing the effect of nutrient mitigation measures in the watersheds of the Southern Bight of the North Sea. Science of the Total Environment 408(6): 1245–1255.PubMedCrossRefGoogle Scholar
  66. Trancoso, A. R., S. Saraiva, L. Fernandes, P. Pina, P. Leitao & R. Neves, 2005. Modelling macroalgae using a 3D hydrodynamic-ecological model in a shallow, temperate estuary. Ecological Modelling 187(2–3): 232–246.CrossRefGoogle Scholar
  67. Valiela, I., 1995. Marine Ecological Processes. Springer, New York.CrossRefGoogle Scholar
  68. Volf, G., N. Atanasova, B. Kompare & N. Ozanic, 2013. Modeling nutrient loads to the northern Adriatic. Journal of Hydrology 504: 182–193.CrossRefGoogle Scholar
  69. Vollenweider, R. A., F. Giovanardi, G. Montanari & A. Rinaldi, 1998. Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics 9(3): 329–357.CrossRefGoogle Scholar
  70. Ward, L. G. & R. R. Twilley, 1986. Seasonal distributions of suspended particulate material and dissolved nutrients in a coastal-plain estuary. Estuaries 9(3): 156–168.CrossRefGoogle Scholar
  71. Warner, J. C., W. R. Geyer & J. A. Lerczak, 2005. Numerical modeling of an estuary: a comprehensive skill assessment. Journal of Geophysical Research: Oceans 110(C5): C05001.CrossRefGoogle Scholar
  72. Willmott, C. J., 1981. On the validation of models. Physical Geography 2: 184–194.Google Scholar
  73. Yin, K. D., P. Y. Qian, M. C. S. Wu, J. C. Chen, L. M. Huang, X. Y. Song & W. J. Jian, 2001. Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine plume during summer. Marine Ecology Progress Series 221: 17–28.CrossRefGoogle Scholar
  74. Zemlys, P., A. Ertürk & A. Razinkovas, 2008. 2D finite element ecological model for the Curonian lagoon. Hydrobiologia 611(1): 167–179.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Madalena S. Malhadas
    • 1
    • 2
  • M. D. Mateus
    • 2
  • D. Brito
    • 2
  • R. Neves
    • 2
  1. 1.HIDROMOD Lda.Porto SalvoPortugal
  2. 2.MARETEC, Instituto Superior Técnico, Universidade de LisboaLisboaPortugal

Personalised recommendations