Hydrobiologia

, Volume 748, Issue 1, pp 145–160 | Cite as

Geometric morphometrics reveals surprising diversity in the Lake Malawi cichlid genus Labeotropheus

ADVANCES IN CICHLID RESEARCH

Abstract

The Lake Malawi cichlid genus Labeotropheus has been a source of confusion among biologists and taxonomists. Although unique populations of both L. fuelleborni and L. trewavasae exist throughout the lake, these populations have not been elevated to species, despite taxonomists doing so for populations within other Lake Malawi cichlids. One reason for this oversight is the supposed consistent differences in morphology between Labeotropheus species; since, where they co-occur, L. fuelleborni is always deeper-bodied than L. trewavasae, it is thought that all deep-bodied populations of Labeotropheus are L. fuelleborni, and the slender ones are L. trewavasae. Using geometric morphometrics, we analyze 18 populations of Labeotropheus and show that body shape varies among populations, and does not always fall into a deep-body/slender-body dichotomy. These differences in body shape are not related to geographical distance among populations, but are possibly related to the type of habitat in which the populations are found. Further, head shape is extremely variable among populations, and we find two locations where there is convergence in head shape between sympatric L. fuelleborni and L. trewavasae. Our results suggest that the morphological criteria applied to the Labeotropheus are not accurate, and hamper the recognition of Labeotropheus biodiversity.

Keywords

Labeotropheus Morphology Geometric morphometrics Head shape Habitat type Species concepts Species criteria Lake Malawi Cichlid 

Supplementary material

10750_2014_1941_MOESM1_ESM.doc (9.4 mb)
Supplementary material 1 (DOC 9624 kb)

References

  1. Ahl, E., 1927. Einge neue Fische der Famile Cichlidae aus dem Nyassa-see. Sitzungsberichte der Gesellschaft naturforschender Freunde zu Berlin 1926: 51–62.Google Scholar
  2. Albertson, R. C., 2008. Morphological divergence predicts habitat partitioning in a Lake Malawi cichlid species complex. Copeia 2008(3): 689–698.CrossRefGoogle Scholar
  3. Albertson, R. C., J. A. Markert, P. D. Danley & T. D. Kocher, 1999. Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, east Africa. Proceedings of the National Academy of Sciences (USA) 96: 5107–5110.CrossRefGoogle Scholar
  4. Arnegard, M. E., J. A. Markert, P. D. Danley, J. R. Stauffer Jr, A. J. Ambali & T. D. Kocher, 1999. Population structure and colour variation of the cichlid fish Labeotropheus fuelleborni Ahl along a recently formed archipelago of rocky habitat patches in southern Lake Malawi. Proceedings of the Royal Society (London) Series B: Biological Sciences B266: 119–130.CrossRefGoogle Scholar
  5. Barlow, G. W., 2000. The Cichlid Fishes: Nature’s Grand Experiment in Evolution. Perseus Press, Cambridge, MA.Google Scholar
  6. Barlow, G. W., 2002. How behavioural studies contribute to the species problem: a piscine perspective. Fish and Fisheries 3: 197–212.CrossRefGoogle Scholar
  7. Bookstein, F. L., 1996. Standard formula for the uniform shape component in landmark data. In Marcus, L. F., M. Corti, A. Loy, G. J. P. Naylor & D. Slice (eds), Advances in Morphometrics. Plenum Press, New York.Google Scholar
  8. Bouton, N., J. de Visser & C. D. N. Barel, 2002. Correlating head shape with ecological variables in rock-dwelling haplochromines (Teleostei: Cichlidae) from Lake Victoria. Biological Journal of the Linnean Society 76(1): 39–48.CrossRefGoogle Scholar
  9. Chakrabarty, P., 2005. Testing conjectures about morphological diversity in cichlids of Lakes Malawi and Tanganyika. Copeia 2005(2): 359–373.CrossRefGoogle Scholar
  10. Choat, J. H., O. S. Klanten, L. van Herwerden, D. R. Robertson & K. D. Clements, 2012. Patterns and processes in the evolutionary history of parrotfishes (Family Labridae). Biological Journal of the Linnean Society 107: 529–557.CrossRefGoogle Scholar
  11. Cohen, J. & L. Wilkinson, 2000. SYSTAT 10: Statistics I. SPSS Inc., Chicago, IL, USA.Google Scholar
  12. Fey, D. P. & J. A. Hare, 2005. Length correction for larval and early juvenile Atlantic menhaden (Brevoortia tyrannus) after preservation in alcohol. Fishery Bulletin 103(4): 725–727.Google Scholar
  13. Fox, C. J., 1996. Length changes in herring (Clupea harengus) larvae: effects of capture and storage in formaldehyde and alcohol. Journal of Plankton Research 18(8): 483–493.CrossRefGoogle Scholar
  14. Fryer, G., 1956. A new species of Labeotropheus from Lake Nyasa, with a redescription of Labeotropheus fuelleborni Ahl and some notes on the genus Labeotropheus (Pisces: Cichlidae). Revue de Zoologie et de Botanique Africaines 54: 280–289.Google Scholar
  15. Genner, M. J., P. Nichols, G. R. Carvalho, R. L. Robinson, P. W. Shaw, A. Smith & G. F. Turner, 2007. Evolution of a cichlid fish in a Lake Malawi satellite lake. Proceedings of the Royal Society (London) Series B: Biological Sciences 274: 2249–2257.CrossRefGoogle Scholar
  16. Kassam, D., K. Yamaoka, B. Rusuwa & M. Hori, 2007. The robustness of geometric morphometrics in testing the morphological equivalence hypothesis among cichlid species from East African Great Lakes. Biological Journal of the Linnean Society 91: 1–9.CrossRefGoogle Scholar
  17. Kerschbaumer, M., & C. Sturmbauer, 2011. The utility of geometric morphometrics to elucidate pathways of cichlid fish evolution. International Journal of Evolutionary Biology 2011: 8 pp.Google Scholar
  18. Konings, A., 2007. Malawi Cichlids in their Natural Habitat, 4th ed. Cichlid Press, El Paso, TX.Google Scholar
  19. Martin, C. H. & M. J. Genner, 2009. High niche overlap between two successfully coexisting pairs of Lake Malawi cichlid fishes. Canadian Journal of Fisheries and Aquatic Sciences 66: 579–588.CrossRefGoogle Scholar
  20. Martinez, P. A., W. M. Berbel-Filho & U. P. Jacobina, 2013. Is formalin fixation and ethanol preservation able to influence in geometric morphometric analysis? Fishes as a case study. Zoomorphology 132: 87–93.CrossRefGoogle Scholar
  21. Mims, M. C., C. D. Hulsey, B. M. Fitzpatrick & J. T. Streelman, 2010. Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Molecular Ecology 19(5): 940–951.CrossRefPubMedGoogle Scholar
  22. Pauers, M. J., 2004. Naturally and sexually selected constraints on morphology, behavior, and coloration in the African cichlid genus Labeotropheus. Unpublished Ph.D. Dissertation, The University of Wisconsin–Milwaukee, Milwaukee, WI, USA.Google Scholar
  23. Pauers, M. J., 2010. Species concepts, speciation, and taxonomic change in the Lake Malawi mbuna, with special reference to the genus Labeotropheus Ahl 1927 (Perciformes: Cichlidae). Reviews in Fish Biology and Fisheries 20(2): 187–202.CrossRefGoogle Scholar
  24. Pauers, M. J., 2011. One fish, two fish, red fish, blue fish: geography, ecology, sympatry, and male coloration in the Lake Malawi cichlid genus Labeotropheus (Perciformes: Cichlidae). International Journal of Evolutionary Biology 2011: 12 pp .Google Scholar
  25. Pauers, M. J. & J. S. McKinnon, 2012. Sexual selection on color and behavior within and between cichlid populations: implications for speciation. Current Zoology 58: 475–483.Google Scholar
  26. Ribbink, A. J., B. A. Marsh, A. C. Marsh, A. C. Ribbink & B. J. Sharp, 1983a. A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi. South African Journal of Zoology 18: 149–310.Google Scholar
  27. Ribbink, A. J., A. C. Marsh, B. A. Marsh & B. J. Sharp, 1983b. The zoogeography, ecology and taxonomy of the genus Labeotropheus Ahl, 1927, of Lake Malawi (Pisces: Cichlidae). Zoological Journal of the Linnean Society 79: 223–243.CrossRefGoogle Scholar
  28. Santos, J. N. S., F. G. Araújo & D. S. Silva, 2009. Length correction for early juvenile Brazilian herring Sardinella janeiro (Eigenmann, 1894) after preservation in formalin, ethanol, and freezing. Neotropical Ichthyology 7(1): 87–92.CrossRefGoogle Scholar
  29. Stauffer Jr., J. R. & K. R. McKaye, 2001. The naming of cichlids. Journal of Aquaculture and Aquatic Sciences (Special Issue: Cichlid Research: State of the Art) 9: 1–16.Google Scholar
  30. Stauffer Jr, J. R. & I. Posner, 2006. An investigation of the utility of feeding angles among Lake Malaŵi rock-dwelling cichlids (Teleostei: Cichlidae). Copeia 2006: 289–292.CrossRefGoogle Scholar
  31. Stauffer Jr, J. R. & E. van Snik Gray, 2004. Phenotypic plasticity: its role in trophic radiation and explosive speciation in cichlids (Teleostei: Cichlidae). Animal Biology 54(2): 137–158.CrossRefGoogle Scholar
  32. Stauffer Jr., J. R., M. Geerts, A. F. Konings, K. R. McKaye & K. E. Black, 2007. Cichlid fish diversity and speciation. In Hodkinson, T. R. & J. A. N. Parnell (eds), Reconstructing the Tree of Life: Taxonomy and Systematics of Species Rich Taxa, Vol. 72., Systematics Association Special Series CRC Press, Boca Raton, FL: 213–225.Google Scholar
  33. Streelman, J. T. & P. D. Danley, 2003. The stages of vertebrate evolutionary radiation. Trends in Ecology and Evolution 18(3): 126–131.CrossRefGoogle Scholar
  34. Turner, G. F., 1999. What is a fish species? Reviews in Fish Biology and Fisheries 9(4): 281–297.CrossRefGoogle Scholar
  35. Turner, G. F., 2000. The nature of species in ancient lakes: perspectives from the fishes of Lake Malawi. Advances in Ecological Research 31: 39–60.CrossRefGoogle Scholar
  36. Turner, G. F., O. Seehausen, M. E. Knight, C. J. Allender & R. L. Robinson, 2001. How many species of cichlid fishes are there in African lakes? Molecular Ecology 10: 793–806.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Section of Vertebrate ZoologyThe Milwaukee Public MuseumMilwaukeeUSA
  2. 2.University of Wisconsin – Waukesha1500 N. University DriveWaukeshaUSA

Personalised recommendations