, Volume 740, Issue 1, pp 25–35 | Cite as

Water level and fish-mediated cascading effects on the microbial community in eutrophic warm shallow lakes: a mesocosm experiment

  • Arda ÖzenEmail author
  • Tuba Bucak
  • Ülkü Nihan Tavşanoğlu
  • Ayşe İdil Çakıroğlu
  • Eti Ester Levi
  • Jan Coppens
  • Erik Jeppesen
  • Meryem BeklioğluEmail author
Primary Research Paper


Information on the effects of water level changes on microbial planktonic communities in lakes is limited but vital for understanding ecosystem dynamics in Mediterranean lakes subjected to major intra- and inter-annual variations in water level. We performed an in situ mesocosm experiment in an eutrophic Turkish lake at two different depths crossed with presence/absence of fish in order to explore the effects of water level variations and the role of top-down regulation at contrasting depths. Strong effects of fish were found on zooplankton, weakening through the food chain to ciliates, HNF and bacterioplankton, whereas the effect of water level variations was overall modest. Presence of fish resulted in lower biomass of zooplankton and higher biomasses of phytoplankton, ciliates and total plankton. The cascading effects of fish were strongest in the shallow mesocosms as evidenced by a lower zooplankton contribution to total plankton biomass and lower zooplankton:ciliate and HNF:bacteria biomass ratios. Our results suggest that a lowering of the water level in warm shallow lakes will enhance the contribution of bacteria, HNF and ciliates to the plankton biomass, likely due to increased density of submerged macrophytes (less phytoplankton); this effect will, however, be less pronounced in the presence of fish.


Bacteria Ciliates Heterotrophic nanoflagellates Macrophytes Phytoplankton 



This study and Arda Özen were supported by a Middle East Technical University grant from the METU-BAP programme of Turkey (BAP-07-02-2009), the METU-DPT ÖYP programme of Turkey (BAP-08-11-DP T-2002-K120510) and by TUBITAK-ÇAYDAĞ (Project nos: 105Y332, 109Y181 and 110Y125). During the writing phase, support was given by FP7-ENV-2009-1, REFRESH (Adaptive strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, Contract No: 244121) and the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No: 603378 ( TB was supported by the TÜBİTAK 2211 Scholarship programme during her graduate study; JC is supported by the TÜBİTAK 2215 Scholarship programme; EEL, ÜNT and AİC were also supported by TÜBITAK ÇAYDAĞ (Project nos: 105Y332 and 110Y125), and EJ was supported by CLEAR (a Villum Kann Rasmussen Centre of Excellence project) and by The Research Council for Nature and Universe, Denmark (272-08-0406), CIRCE and CRES. We also want to thank Gizem Bezirci, Merve Tepe, Betül Acar, Nergis İrem Ertan, Mert Elverici and Soner Oruç for their great efforts during the fieldwork. We thank Anne Mette Poulsen for valuable editorial assistance. This study was a part of the PhD dissertation of Arda Özen at the Middle East Technical University.


  1. Andersen, T. & D. O. Hessen, 1991. Carbon, nitrogen and phosphorus content of freshwater zooplankton. Limnology and Oceanography 36: 807–814.CrossRefGoogle Scholar
  2. Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 697–709.CrossRefGoogle Scholar
  3. Beklioğlu, M. & C. O. Tan, 2008. Restoration of a shallow Mediterranean lake by biomanipulation complicated by drought. Fundamental and Applied Limnology 171: 105–118.CrossRefGoogle Scholar
  4. Beklioğlu, M., Ö. İnce & İ. Tüzün, 2003. Restoration of eutrophic Lake Eymir, Turkey, by biomanipulation undertaken following a major external nutrient control I. Hydrobiologia 489: 93–105.CrossRefGoogle Scholar
  5. Beklioğlu, M., G. Altinayar & C. O. Tan, 2006. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Archiv für Hydrobiologie 166: 535–556.CrossRefGoogle Scholar
  6. Beklioğlu, M., S. Romo, I. Kagalou, X. Quintana & E. Becares, 2007. State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584: 317–326.CrossRefGoogle Scholar
  7. Biddanda, B., M. Ogdahl & J. Cotner, 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnology and Oceanography 46: 730–739.CrossRefGoogle Scholar
  8. Borsheim, K. Y. & G. Bratback, 1987. Cell volume to carbon conversion factors for bacterivorous Monas sp. enriched from seawater. Marine Ecology Progress Series 36: 171–175.CrossRefGoogle Scholar
  9. Bratbak, G. & I. Dundas, 1984. Bacterial dry matter content and biomass estimations. Applied and Environmental Microbiology 48: 755–757.PubMedPubMedCentralGoogle Scholar
  10. Bucak, T., E. Saraoğlu, E. E. Levi, Ü. N. Tavşanoğlu, Aİ. Çakiroğlu, E. Jeppesen & M. Beklioğlu, 2012. The influence of water level on macrophyte growth and trophic interactions in eutrophic Mediterranean shallow lakes: a mesocosm experiment with and without fish. Freshwater Biology 57: 1631–1642.CrossRefGoogle Scholar
  11. Carrick, H. J., G. L. Fahnenstiel, E. F. Stoermer & R. G. Wetzel, 1991. The importance of zooplankton–protozoan trophic couplings in Lake Michigan. Limnology and Oceanography 36: 1335–1345.CrossRefGoogle Scholar
  12. Christoffersen, K., B. Riemann, A. Klysner & M. Søndergaard, 1993. Potential role of natural populations of zooplankton on plankton community structure in eutrophic lake water. Limnology and Oceanography 38: 561–573.CrossRefGoogle Scholar
  13. Coops, H., M. Beklioğlu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems: workshop conclusions. Hydrobiologia 506: 23–27.CrossRefGoogle Scholar
  14. Cotner, J. B. & B. A. Biddanda, 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystem. Ecosystems 5: 105–121.CrossRefGoogle Scholar
  15. Farjalla, V. F., D. A. Azevedo, F. A. Esteves, R. L. Bozelli, F. Roland & A. Enrich-Prast, 2006. Influence of hydrological pulse on bacterial growth and DOC uptake in a clear-water Amazonian lake. Microbial Ecology 52: 334–344.PubMedCrossRefGoogle Scholar
  16. Foissner, W. & H. Berger, 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biology 35: 375–482.Google Scholar
  17. Foissner, W., H. Berger & J. Schaumburg, 1999. Identification and Ecology of Limnetic Plankton Ciliates. Informations berichte des Bayer. Landesamtes für Wasserwirtschaft. 3, 793 pp.Google Scholar
  18. Fonte, E. S., L. S. Carneiro, A. Caliman, R. L. Bozelli, F. D. A. Esteves & V. F. Farjalla, 2011. Effects of resources and food web structure on bacterioplankton production in a tropical humic lagoon. Journal of Plankton Research 33: 1596–1605.CrossRefGoogle Scholar
  19. Gaedke, U. & D. Straile, 1994. Seasonal changes of the quantitative importance of protozoans in a large lake: an ecosystem approach using mass-balanced carbon flow diagrams. Marine Microbial Food Webs 8: 163–188.Google Scholar
  20. Gafny, S., A. Gasith & M. Goren, 1992. Effect of water level fluctuation on shore spawning of Mirogrex terraesanctae (Steinitz), Cyprinidae in Lake Kinneret, Israel. Journal of Fish Biology 41: 863–871.CrossRefGoogle Scholar
  21. Gasol, J. M. & C. M. Duarte, 2000. Comparative analyses in aquatic microbial ecology: how far do they go? FEMS Microbiology Ecology 31: 99–106.PubMedCrossRefGoogle Scholar
  22. Havens, K. E., B. Sharfstein, M. A. Brady, T. L. East, M. C. Harwell, R. P. Maki & A. J. Rodusky, 2004. Recovery of submerged plants from high water stress in a large subtropical Lake in Florida, USA. Aquatic Botany 78: 67–82.CrossRefGoogle Scholar
  23. Jeppesen, E., Ma Søndergaard, Mo Søndergaard, K. Christoffersen, K. Jürgens, J. Theil-Nielsen & L. Schlüter, 2002. Cascading trophic interactions in the littoral zone: an enclosure experiment in shallow Lake Stigsholm, Denmark. Archiv für Hydrobiologie 153: 533–555.Google Scholar
  24. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, M. Beklioğlu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1930–1941.PubMedCrossRefGoogle Scholar
  25. Jeppesen, E., B. Kronvang, J. E. Olesen, M. Søndergaard, C. C. Hoffmann, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, S. Larsen, M. Beklioğlu, M. Meerhoff, A. Özen & K. Özkan, 2011. Climate change effect on nitrogen loading from catchment in Europe: implications for nitrogen retention and ecological state of lakes and adaptations. Hydrobiologia 663: 1–21.CrossRefGoogle Scholar
  26. Jürgens, K. & E. Jeppesen, 2000. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. Journal of Plankton Research 22: 1047–1070.CrossRefGoogle Scholar
  27. Jürgens, K., H. Arndt & K. O. Rothhaupt, 1994. Zooplankton-mediated changes of bacterial community structure. Microbial Ecology 27: 27–42.PubMedCrossRefGoogle Scholar
  28. Leira, M. & M. Cantonati, 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613: 171–184.CrossRefGoogle Scholar
  29. Markosova, R. & J. Jezek, 1993. Bacterioplankton interactions with daphnia and algae in experimental enclosures. Hydrobiologia 264: 85–99.CrossRefGoogle Scholar
  30. Müller-Solger, A., M. T. Brett, C. Luecke, J. J. Elser & C. R. Goldman, 1997. The effects of planktivorous fish (golden shiners) on the ciliate community of a mesotrophic lake. Journal of Plankton Research 12: 1815–1828.CrossRefGoogle Scholar
  31. Muylaert, K., K. Van der Gucht, N. Vloemans, L. De Meester, M. Gillis & W. Vyverman, 2002. Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Applied Environmental Microbiology 68: 4740–4750.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Naselli-Flores, L., 2003. Man-made lakes in Mediterranean semi-arid climate: the strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia 506: 13–21.CrossRefGoogle Scholar
  33. Nishimura, Y., T. Ohtsuka, K. Yoshiyama, D. Nakai, F. Shibahara & M. Maehata, 2011. Cascading effects of larval Crucian carp introduction on phytoplankton and microbial communities in a paddy field: top-down and bottom-up controls. Ecological Research 26: 615–626.CrossRefGoogle Scholar
  34. Nixdorf, B. & H. Arndt, 1993. Seasonal dynamics of plankton component including the microbial web in Lake Müggelsee. Internationale Revue gesamten Hydrobiologie 78: 403–410.CrossRefGoogle Scholar
  35. Nõges, P., T. Nõges & A. Laas, 2010. Climate-related changes of phytoplankton seasonalityin large shallow Lake Võrtsjärv, Estonia. Aquatic Ecosystem Health & Management 13: 154–163.CrossRefGoogle Scholar
  36. Pace, M. L. & J. J. Cole, 1994. Comparative and experimental approaches to top down and bottom up regulation of bacteria. Microbial Ecology 28: 181–193.PubMedCrossRefGoogle Scholar
  37. Pace, M. L. & E. Funke, 1991. Regulation of planktonic microbial communities by nutrients and herbivores. Ecology 73: 904–914.CrossRefGoogle Scholar
  38. Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.CrossRefGoogle Scholar
  39. Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon:carbon:volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnology and Oceanography 34: 1097–1103.CrossRefGoogle Scholar
  40. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 384.Google Scholar
  41. Riemann, B., 1985. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Applied and Environmental Microbiology 50: 187–193.PubMedPubMedCentralGoogle Scholar
  42. Roozen, F. C. J. M., M. Lürling, H. Vlek, E. A. J. V. P. Kraan, B. W. Ibelings & M. Scheffer, 2007. Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshwater Biology 52: 977–987.CrossRefGoogle Scholar
  43. Özen, A., B. Karapinar, I. Küçük, E. Jeppesen & M. Beklioğlu, 2010. Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management. Hydrobiologia 646: 61–72.CrossRefGoogle Scholar
  44. Özkan, K., E. Jeppesen, L. S. Johansson & M. Beklioğlu, 2010. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loadings in shallow warm lakes: a mesocosm experiment. Freshwater Biology 55: 463–475.CrossRefGoogle Scholar
  45. Saad, J. F., M. R. Schiaffino, A. Vinocur, I. O’Farrell, G. Tell & I. Izaguirre, 2013. Microbial planktonic communities of freshwater environments from Tierra del Fuego: dominant trophic strategies in lakes with contrasting features. Journal of Plankton Research 35: 1220–1233.CrossRefGoogle Scholar
  46. Stanley, E. H., M. D. Johnson & A. K. Ward, 2003. Evaluating the influence of macrophytes on algal and bacterial production in multiple habitats of a freshwater wetland. Limnology and Oceanography 48: 1101–1111.CrossRefGoogle Scholar
  47. Tan, C. & M. Beklioğlu, 2006. Modelling complex nonlinear responses of shallow lakes to fish and hydrology using artificial neural networks. Ecological Modelling 196: 183–194.CrossRefGoogle Scholar
  48. Tzaras, A., F. R. Pick, A. Mazumder & D. R. S. Lean, 1999. Effects of nutrients, planktivorous fish and water column depth on components of the microbial food web. Aquatic Microbial Ecology 19: 67–80.CrossRefGoogle Scholar
  49. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen-Internationale Vereinigung Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  50. Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics 33: 341–370.CrossRefGoogle Scholar
  51. Vanni, M. J. & C. D. Layne, 1997. Nutrient recycling and herbivory as mechanisms in the “top-down” effect of fish on algae in lakes. Ecology 78: 21–40.Google Scholar
  52. Weisse, T., 1991. The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. Journal of Plankton Research 13: 167–185.CrossRefGoogle Scholar
  53. Wetzel, R. G. & M. Søndergaard, 1998. Role of submerged macrophytes for the microbial community and dynamics of dissolved organic carbon in aquatic ecosystems. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 133–148.CrossRefGoogle Scholar
  54. Wickham, S. A., 1998. The direct and indirect impact of Daphnia and Cyclops on a freshwater microbial food web. Journal of Plankton Research 20: 739–755.CrossRefGoogle Scholar
  55. Wilcock, R. J., P. D. Champion, J. W. Nagels & G. F. Croker, 1999. The influence of aquatic macrophytes on the hydraulic and physico-chemical properties of a New Zealand lowland stream. Hydrobiologia 416: 203–214.CrossRefGoogle Scholar
  56. Yamazaki, M., T. Ohtsuka, Y. Kusuoka, M. Maehata, H. Obayashi, K. Imai, F. Shibahara & M. Kimura, 2010. The impact of nigorobuna crucian carp larvae/fry stocking and rice-straw application on the community structure of aquatic organisms in Japanese rice fields. Fisheries Science 76: 207–217.CrossRefGoogle Scholar
  57. Zhang, Y., X. Liu, M. Wang & B. Qin, 2013. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Organic Geochemistry 55: 26–37.CrossRefGoogle Scholar
  58. Zingel, P. & T. Nõges, 2008. Protozoan grazing in shallow macrophyte and plankton lakes. Fundamental and Applied Limnology 171: 15–25.CrossRefGoogle Scholar
  59. Zöllner, E., B. Santer, M. Boersma, H. G. Hoppe & K. Jürgens, 2003. Cascading predation effects of Daphnia and copepods on microbial foodweb components. Freshwater Biology 48: 2174–2193.CrossRefGoogle Scholar
  60. Zöllner, E., H. G. Hoppe, U. Sommer & K. Jürgens, 2009. Effect of zooplankton mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnology and Oceanography 54: 262–275.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Arda Özen
    • 1
    • 2
    • 3
    Email author
  • Tuba Bucak
    • 3
  • Ülkü Nihan Tavşanoğlu
    • 3
  • Ayşe İdil Çakıroğlu
    • 3
  • Eti Ester Levi
    • 3
  • Jan Coppens
    • 3
  • Erik Jeppesen
    • 4
    • 5
    • 6
  • Meryem Beklioğlu
    • 3
    • 7
    Email author
  1. 1.Department of Forest EngineeringCankiri Karatekin UniversityÇankırıTurkey
  2. 2.Department of Biology, Faculty of ScienceAtatürk UniversityErzurumTurkey
  3. 3.Limnology Laboratory, Department of BiologyMiddle East Technical University, Üniversiteler MahallesiAnkaraTurkey
  4. 4.Department of Bioscience and the Arctic Centre (ARC)Aarhus UniversitySilkeborgDenmark
  5. 5.Greenland Climate Research Centre (GCRC)Greenland Institute of Natural ResourcesNuukGreenland
  6. 6.Sino-Danish Centre for Education and Research (SDC)BeijingChina
  7. 7.Kemal Kurdaş Ecological Research and Training Stations, Lake EymirMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations