Advertisement

Hydrobiologia

, Volume 738, Issue 1, pp 171–189 | Cite as

Applying macrophyte community indicators to assess anthropogenic pressures on shallow soft bottoms

  • Joakim P. Hansen
  • Martin Snickars
Primary Research Paper

Abstract

Vegetated soft bottoms are under pressure due to a number of anthropogenic stressors, such as coastal exploitation and eutrophication. The ecological value of these biotopes has gained recognition through international conventions and the EU directives, which request methods for assessment of the environmental status of coastal areas. However, currently there is no appropriate method for assessing the status of shallow vegetated soft bottoms in the northern Baltic Sea. Therefore, we developed a macrophyte community index and tested its response in relation to important pressures (eutrophication and boating activity) and natural gradients (topographic openness, depth and salinity) on shallow bays in the northern Baltic Sea. The macrophyte index, and hence the proportion of sensitive to tolerant species, decreased with increasing phosphorus concentration, turbidity and level of boating activity, while the cumulative cover of macrophytes only showed a negative trend in response to increasing turbidity. Juvenile fish abundance was positively related to the index, indicating importance of sensitive macrophyte species for ecosystem functioning. As the index was tested in a wide geographic area, and showed a uniform response across natural gradients, it is a promising tool for assessment of environmental status that may be applied also in other vegetated soft-bottom areas.

Keywords

Monitoring Bio-assessment Eutrophication Boating activity Aquatic plants Baltic Sea 

Notes

Acknowledgments

Data for the project were kindly shared by the Uppland Foundation (Johan Persson), the Department of Aquatic Resources at the Swedish University of Agricultural Sciences (Alfred Sandström), and the Government of Åland (Suvi Kiviluoto). We also thank Ida Brännäng for GIS assistance and Mats Blomqvist (Hafok AB) for assistance with the raw data. The manuscript was improved by comments from two anonymous reviewers, and from Prof. Lena Kautsky on an early draft of the manuscript. This project was partly financed by the Central Baltic Interreg IVA programme (Archipelagos and Islands) through the European Regional Development Fund (project AI4 NANNUT).

References

  1. Ajanko, H., 2004a. Nya stora hamnboken 2: Åland. Turun Partio-Sissit ry, Åbo (in Swedish and Finnish).Google Scholar
  2. Ajanko, H., 2004b. Nya stora hamnboken 3: Finska viken. Turun Partio-Sissit ry, Åbo (in Swedish and Finnish).Google Scholar
  3. Améen, Å. & S. A. Hansson, 2001. Naturhamnar på ostkusten. Svenska kryssarklubben, Stockholm (in Swedish).Google Scholar
  4. Anonymous, 2007. Makrofyter och gömfröiga växter. In Handbok 2007:4. Status, potential och kvalitetskrav för sjöar, vattendrag, kustvatten och vatten i övergångszon. Bilaga B. Bedömningsgrunder för kustvatten och vatten i övergångszon. Swedish Environmental Protection Agency: 23–39 (in Swedish).Google Scholar
  5. Anonymous, 2008. Naturvårdsverkets föreskrifter och allmänna råd om klassificering och miljökvalitetsnormer avseende ytvatten, beslutade den 12 december 2007. Naturvårdsverkets författningssamling, NFS 2008:1 (in Swedish).Google Scholar
  6. Anonymous, 2009. Data från Basinventering av Natura 2000 och skyddade områden. Beskrivning av data och exempel på användning. Swedish Environmental Protection Agency, Report 5907 (in Swedish with English summary).Google Scholar
  7. Appelgren, K. & J. Mattila, 2005. Variation in vegetation communities in shallow bays of the northern Baltic Sea. Aquatic Botany 83: 1–13.CrossRefGoogle Scholar
  8. Bäck, S., J. Ekebom & P. Kangas, 2002. A proposal for a long-term baseline phytobenthos monitoring programme for the Finnish Baltic coastal waters: monitoring submerged rocky shore vegetation. Environmental Monitoring and Assessment 79: 13–27.PubMedCrossRefGoogle Scholar
  9. Barko, J. W. & M. Smart, 1981. Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs 51: 219–235.CrossRefGoogle Scholar
  10. Bergström, U., G. Sundblad, A.-L. Downie, M. Snickars, C. Boström & M. Lindegarth, 2013. Evaluating eutrophication management scenarios in the Baltic Sea using species distribution modelling. Journal of Applied Ecology 50: 680–690.CrossRefGoogle Scholar
  11. Blindow, I., 1992. Decline of charophytes during eutrophication: comparison with angiosperms. Freshwater Biology 28: 9–14.CrossRefGoogle Scholar
  12. Blindow, I., 2000. Distribution of charophytes along the Swedish coast in relation to salinity and eutrophication. International Review of Hydrobiology 85: 707–717.CrossRefGoogle Scholar
  13. Blomqvist, S., A. Gunnars & R. Elmgren, 2004. Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: a matter of salt. Limnology and Oceanography 49: 2236–2241.CrossRefGoogle Scholar
  14. Boegle, M. G., S. C. Schneider, A. Melzer & H. Schubert, 2010. Distinguishing Chara baltica, C. horrida and C. liljebladii: conflicting results from analysis of morphology and genetics. Charophytes 2: 53–58.Google Scholar
  15. Boston, H. L., M. S. Adams & J. D. Madsen, 1989. Photosynthetic strategies and productivity in aquatic systems. Aquatic Botany 34: 27–57.CrossRefGoogle Scholar
  16. Boström C., 2001. Ecology of Seagrass Meadows in the Baltic Sea. PhD thesis. Department of Biology, Environment and Marine Biology, Åbo Akademy University.Google Scholar
  17. Boström, C., S. Baden, A.-C. Bockelmann, K. Dromph, S. Fredriksen, C. Gustafsson, D. Krause-Jensen, T. Möller, S. L. Nielsen, B. Olesen, L. Pihl & E. Rinde, 2014. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems. doi: 10.1002/aqc.2424.Google Scholar
  18. Clean Water Act of 1972, 33 USC.§ 1251 et seq. 2002. Federal water pollution control act as amended through P.L. 107–303, November 27, 2002.Google Scholar
  19. Conley, D. J., 2000. Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 410: 87–96.CrossRefGoogle Scholar
  20. Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot & G. E. Likens, 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323: 1014–1015.PubMedCrossRefGoogle Scholar
  21. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. The council of the European communities. Official Journal L 206 of 22/07/1992.Google Scholar
  22. Dahlgren, S. & L. Kautsky, 2004. Can different vegetative states in shallow coastal bays of the Baltic Sea be linked to internal nutrient levels and external nutrient load? Hydrobiologia 514: 249–258.CrossRefGoogle Scholar
  23. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities.Google Scholar
  24. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Communities.Google Scholar
  25. Duarte, C. M., 1991. Seagrass depth limits. Aquatic Botany 40: 363–377.CrossRefGoogle Scholar
  26. Duarte, C. M., 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112.Google Scholar
  27. Duarte, C. M. & D. A. Roff, 1991. Architectural and life history constraints to submersed macrophyte community structure: a simulation study. Aquatic Botany 42: 15–29.CrossRefGoogle Scholar
  28. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182. doi: 10.1017/S1464793105006950.
  29. Eriksson, B. K., A. Sandström, M. Isæus, H. Schreiber & P. Karås, 2004. Effects of boating activities on aquatic vegetation in the Stockholm archipelago, Baltic Sea. Estuarine, Coastal and Shelf Science 61: 339–349.CrossRefGoogle Scholar
  30. Fabris, M., S. Schneider & A. Melzer, 2009. Macrophyte-based bioindication in rivers: a comparative evaluation of the reference index (RI) and the trophic index of macrophytes (TIM). Limnologica – Ecology and Management of Inland Waters 39: 40–55.CrossRefGoogle Scholar
  31. Fleming-Lehtinen, V. & M. Laamanen, 2012. Long-term changes in Secchi depth and the role of phytoplankton in explaining light attenuation in the Baltic Sea. Estuarine, Coastal and Shelf Science 102–103: 1–10.CrossRefGoogle Scholar
  32. Fox, J., 2006. Structural equation modeling with the sem package in R. Structural Equation Modeling 13: 465–486.CrossRefGoogle Scholar
  33. Fox, J., Z. Nie & J. Byrnes, 2013. sem: Structural Equation Models. R Package Version 3.1-0. http://CRAN.R-project.org/package=sem (Jan 2013).
  34. Grace, J. B., 2006. Structural Equation Modeling and Natural Systems. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  35. Granath, L., C. Söderbergh, J. Sannel & J. Lannek, 2009. Landsort – Skanör med Göta kanal, Vättern och Bornholm: din guide till Ost- och Sydkustens öar, gäst- och naturhamnar. Nautiska Förlaget, Stockholm (in Swedish).Google Scholar
  36. Granath, L., L. Hässler & J. Sannel, 2010. Arholma – Landsort med Gotland: din guide till skärgårdens öar, gäst- och naturhamnar. Nautiska Förlaget, Stockholm (in Swedish).Google Scholar
  37. Håkansson, L., 2008. Factors and criteria to quantify coastal area sensitivity/vulnerability to eutrophication: presentation of a sensitivity index based on morphometrical parameters. International Review of Hydrobiology 93: 372–388.CrossRefGoogle Scholar
  38. Halpern, B. S., S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D'Agrosa, J. F. Bruno, K. S. Casey, C. Ebert, H. E. Fox, R. Fujita, D. Heinemann, H. S. Lenihan, E. M. P. Madin, M. T. Perry, E. R. Selig, M. Spalding, R. Steneck & R. Watson, 2008. A global map of human impact on marine ecosystems. Science 319: 948–952.Google Scholar
  39. Hansen, J. P., 2010. Effects of Morphometric Isolation and Vegetation on the Macroinvertebrate Community in Shallow Baltic Sea Land-Uplift Bays. PhD thesis. Department of Botany, Stockholm University.Google Scholar
  40. Hansen, J. P., S. A. Wikström & L. Kautsky, 2008. Effects of water exchange and vegetation on the macroinvertebrate fauna composition of shallow land-uplift bays in the Baltic Sea. Estuarine, Coastal and Shelf Science 77: 535–547.CrossRefGoogle Scholar
  41. Hansen, J. P., S. A. Wikström & L. Kautsky, 2012. Taxon composition and food-web structure in a morphometric gradient of Baltic Sea land-uplift bays. Boreal Environment Research 17: 1–20.Google Scholar
  42. HELCOM, 2011. Helsinki Commissions’ Map and Data Service. http://maps.helcom.fi/website/mapservice/index.html (Feb 2011).
  43. HELCOM, 2013. Red List of Baltic Sea underwater biotopes, habitats and biotope complexes. Baltic Sea Environment Proceedings No. 138.Google Scholar
  44. Henricson, C., E. Sandberg-Kilpi & R. Munsterhjelm, 2006. Experimental studies on the impact of turbulence, turbidity and sedimentation on Chara tomentosa L. Cryptogamie Algologie 27: 419–434.Google Scholar
  45. Isæus, M., 2004. Factors Structuring Fucus Communities at Open and Complex Coastlines in the Baltic Sea. PhD thesis. Department of Botany, Stockholm University.Google Scholar
  46. Isæus, M. & B. Rygg, 2005. Wave Exposure Calculation for the Finnish Coast. Norwegian Institute for Water Research, NIVA (Oslo), Report LNR 5057-2005.Google Scholar
  47. Karås, P., 1999. Recruitment areas for stocks of perch, pike and pikeperch in the Baltic. Swedish Board of Fisheries, Report 6: 31–65. (in Swedish with English summary).Google Scholar
  48. Karås, P. & R. Hudd, 1993. Reproduction areas of fish in the northern Quark (Gulf of Bothnia). Aqua Fennica 23: 39–49.Google Scholar
  49. Kautsky, H., 1991. Influence of eutrophication on the distribution of phytobenthic plant and animal communities. Internationale Revue der gesamten Hydrobiologie 76: 423–432.CrossRefGoogle Scholar
  50. Kautsky, H., 1993. Methods for monitoring of phytobenthic plant and animal communities in the Baltic Sea. In Pliński, M. (ed.), Proceedings of the Conference: The Ecology of Baltic Terrestrial, Coastal and Offshore Areas – Protection and Management: Part 1 – Marine Environment. Sopot, Poland, 1992.Google Scholar
  51. Kautsky, N., H. Kautsky, U. Kautsky & M. Waern, 1986. Decreased depth penetration of Fucus vesiculosus (L.) since the 1940s indicates eutrophication of the Baltic Sea. Marine Ecology Progress Series 28: 1–8.CrossRefGoogle Scholar
  52. Kovtun, A., K. Torn & J. Kotta, 2009. Long-term changes in a northern Baltic macrophyte community. Estonian Journal of Ecology 58: 270–285.CrossRefGoogle Scholar
  53. Krause-Jensen, D., J. Carstensen, K. Dahl, S. Bäck & S. Neuvonen, 2009. Testing relationships between macroalgae cover and Secchi depth in the Baltic Sea. Ecological Indicators 9: 1284–1287.CrossRefGoogle Scholar
  54. Krause-Jensen, D., J. Carstensen, S. L. Nielsen, T. Dalsgaard, P. B. Christensen, H. Fossing & M. B. Rasmussen, 2011. Sea bottom characteristics affect depth limits of eelgrass Zostera marina. Marine Ecology Progress Series 425: 91–102.CrossRefGoogle Scholar
  55. Leek, Ö., 2007. Bottenhavskusten: i Gävlefiskarnas kölvatten. Kustguide Öregrund – Höga kusten. County Administration in Västernorrland County, Härnösand (in Swedish).Google Scholar
  56. Lindegarth, M., U. Bergström, J. Mattila, S. Olenin, M. Ollikainen, A.-L. Downie, G. Sundblad, M. Bučas, M. Gullström, M. Snickars, M. von Numers, J. R. Svensson & A.-K. Kosenius, 2014. Testing the potential for predictive modeling and mapping and extending its use as a tool for evaluating management scenarios and economic valuation in the Baltic Sea (PREHAB). Ambio 43: 82–93.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Möller, T. & G. Martin, 2007. Distribution of the eelgrass Zostera marina L. in the coastal waters of Estonia, NE Baltic Sea. Proceedings of the Estonian Academy of Sciences, Biology and Ecology 56: 270–277.Google Scholar
  58. Munsterhjelm, R., 1997. The aquatic macrophyte vegetation of flads and gloes, S coast of Finland. Acta Botanica Fennica 157: 1–68.Google Scholar
  59. Munsterhjelm, R., C. Henricson & E. Sandberg-Kilpi, 2008. The decline of a charophyte: occurrence dynamics of Chara tomentosa L. at the southern coast of Finland. Memoranda Societatis pro Fauna et Flora Fennica 84: 56–80.Google Scholar
  60. Orfanidis, S., P. Panayotidis & K. I. Ugland, 2011. Ecological evaluation index continuous formula (EEI-c) application: a step forward for functional groups, the formula and reference condition values. Mediterranean Marine Science 12: 199–231.CrossRefGoogle Scholar
  61. Penning, W. E., B. Dudley, M. Mjelde, S. Hellsten, J. Hanganu, A. Kolada, M. van den Berg, S. Poikane, G. Phillips, N. Willby & F. Ecke, 2008a. Using aquatic macrophyte community indices to define the ecological status of European lakes. Aquatic Ecology 42: 253–264.CrossRefGoogle Scholar
  62. Penning, W. E., M. Mjelde, B. Dudley, S. Hellsten, J. Hanganu, A. Kolada, M. van den Berg, S. Poikane, G. Phillips, N. Willby & F. Ecke, 2008b. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquatic Ecology 42: 237–251.CrossRefGoogle Scholar
  63. Persson, J. & G. Johansson, 2007. Manual för basinventering av marina habitat (1150, 1160 och 1650). Metoder för kartering av undervattensvegetation. Swedish Environmental Protection Agency (in Swedish).Google Scholar
  64. Persson, J., L. Håkanson & P. Pilesjö, 1994. Prediction of surface water turnover time in coastal waters using digital bathymetric information. Environmetrics 5: 433–449.CrossRefGoogle Scholar
  65. Pitkänen, H., M. Peuraniemi, M. Westerbom, M. Kilpi & M. von Numers, 2013. Long-term changes in distribution and frequency of aquatic vascular plants and charophytes in an estuary in the Baltic Sea. Annales Botanici Fennici 50 (Suppl. A): 1–54.CrossRefGoogle Scholar
  66. R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (May 2013).
  67. Rinne, H., S. Salovius-Lauren & J. Mattila, 2011. The occurrence and depth penetration of macroalgae along environmental gradients in the northern Baltic Sea. Estuarine, Coastal and Shelf Science 94: 182–191.CrossRefGoogle Scholar
  68. Rozas, L. P. & W. E. Odum, 1988. Occupation of submerged aquatic vegetation by fishes: testing the roles of food and refuge. Oecologia 77: 101–106.CrossRefGoogle Scholar
  69. Sand-Jensen, K., N. L. Pedersen, I. Thorsgaard, B. Moeslund, J. Borum & K. P. Brodersen, 2008. 100 years of vegetation decline and recovery in Lake Fure, Denmark. Journal of Ecology 96: 260–271.CrossRefGoogle Scholar
  70. Sandström, A., B. K. Eriksson, P. Karås, M. Isæus & H. Schreiber, 2005. Boating and navigation activities influence the recruitment of fish in a Baltic Sea archipelago area. Ambio 34: 125–130.PubMedGoogle Scholar
  71. Scheffer, M., 2004. Ecology of Shallow Lakes. Kluwer, Dordrecht, the Netherlands.CrossRefGoogle Scholar
  72. Scheinin, M. & J. Mattila, 2010. The structure and dynamics of zooplankton communities in shallow bays in the northern Baltic Sea during a single growing season. Boreal Environment Research 15: 397–412.Google Scholar
  73. Schramm, W. & P. H. Nienhuis (eds), 1996. Marine Benthic Vegetation: Recent Changes and the Effects of Eutrophication. Springer, Berlin.Google Scholar
  74. Schubert, H. & I. Blindow (eds), 2003. Charophytes of the Baltic Sea. Koeltz Scientific Books, Königstein, Germany.Google Scholar
  75. Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Reprint 1985. Koeltz Scientific Books, Königstein, Germany.Google Scholar
  76. SMHI, 2011. Swedish Meterological and Hydrological Institute. Home Water. https://homevatten.smhi.se/homevatten/home.do (Feb 2011).
  77. Snickars, M., 2008. Coastal Lagoons: Assemblage Patterns and Habitat Use of Fish in Vegetated Nursery Habitats. PhD thesis. Husö Biological Station, Environmental and Marine Biology, Åbo Akademi University.Google Scholar
  78. Snickars, M., A. Sandström, A. Lappalainen, J. Mattila, K. Rosqvist & L. Urho, 2009. Fish assemblages in coastal lagoons in land-uplift succession: the relative importance of local and regional environmental gradients. Estuarine, Coastal and Shelf Science 81: 247–256.CrossRefGoogle Scholar
  79. Törnqvist, O. & A. Engdahl, 2010. Mapping and Analysis of Disturbance Factors in the Marine Environment. Swedish Environmental Protection Agency, Report 6376 (in Swedish with English summary).Google Scholar
  80. Viaroli, P., M. Bartoli, G. Giordani, M. Naldi, S. Orfanidis & J. M. Zaldivar, 2008. Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquatic Conservation: Marine and Freshwater Ecosystems 18: S105–S117.CrossRefGoogle Scholar
  81. Vuori, K.-M., S. Mitikka & H. Vuoristo, 2010. Guidance on Ecological Classification of Surface Waters in Finland. Environmental Administration Guidelines 3/2009. Finnish Environment Institute (SYKE), Helsinki, Finland (in Finnish with English summary).Google Scholar
  82. Wallentinus, I., 1979. Environmental Influences on Benthic Macrovegetation in the Trosa–Askö Area, Northern Baltic Proper. II. The Ecology of Macroalgae and Submersed Phanerogams. Contributions from the Askö Laboratory 25, Stockholm University.Google Scholar
  83. Wennberg, S. & C. Lindblad, 2006. Sammanställning och analys av kustnära undervattensmiljöer. Swedish Environmental Protection Agency, Report 5591 (in Swedish).Google Scholar
  84. Willby, N. J., V. J. Abernethy & B. O. L. Demars, 2000. Attribute-based classification of European hydrophytes and its relationship to habitat utilization. Freshwater Biology 43: 43–74.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Stockholm University Baltic Sea CentreStockholmSweden
  2. 2.Metsähallitus Natural Heritage ServicesKorpoströmFinland
  3. 3.Department of BiosciencesÅbo Akademi UniversityÅboFinland

Personalised recommendations