, Volume 748, Issue 1, pp 171–184 | Cite as

Phylogeographic and phenotypic assessment of a basal haplochromine cichlid fish from Lake Chila, Zambia

  • B. Egger
  • Y. Klaefiger
  • A. Indermaur
  • S. Koblmüller
  • A. Theis
  • S. Egger
  • T. Näf
  • M. Van Steenberge
  • C. Sturmbauer
  • C. Katongo
  • W. Salzburger


The basal haplochromine genus Pseudocrenilabrus comprises three valid species, although the current taxonomy most probably underestimates species richness. Previous phylogeographic studies on the P. philander species complex revealed a clear structuring of populations, shaped by river capture events. Here we report the discovery of P. cf. philander in Lake Chila, a small lake south of Lake Tanganyika. We were interested whether discrete morphs, similar to what has been found in Lake Mweru and the Lunzua River, were present in Lake Chila. We evaluated the phenotypic variability of the population in relation to other lacustrine and riverine populations by quantifying colouration and body shape. To place the specimens in a phylogeographic framework, we inferred a phylogeny based on the most variable part of the mitochondrial control region. We found two divergent mtDNA lineages in Lake Chila and tested for population structure and admixture between the lineages using microsatellite data. Our study reveals a complex phylogeographic pattern and demonstrates admixture of distant mtDNA lineages in Lake Chila, producing a hybrid swarm with substantial phenotypic variability. Unlike in Lake Mweru, Pseudocrenilabrus has not diversified further into discrete morphs in Lake Chila, probably because of the long-term instability of the lake and the presumed recency of the admixture event.


Phylogeography Nuptial colouration Pseudocrenilabrus Hybridization 



We would like to thank our helpers in the field, J. Bachmann, T. Bosia and L. Schild, the Kasanka Trust, the Lake Tanganyika Research Unit, Department of Fisheries, Republic of Zambia, for research permits and Radim Blazek and Martin Reichard for providing samples. This study was supported by grants from the European Research Council (ERC, Starting Grant ‘INTERGENADAPT’), the University of Basel, and the Swiss National Science Foundation (SNF, Grant 3100A0_138224) to W. S.

Supplementary material

10750_2014_1919_MOESM1_ESM.tif (42 mb)
Supplementary material 1 (TIFF 43053 kb)
10750_2014_1919_MOESM2_ESM.pdf (70 kb)
Supplementary material 2 (PDF 71 kb)
10750_2014_1919_MOESM3_ESM.pdf (73 kb)
Supplementary material 3 (PDF 73 kb)
10750_2014_1919_MOESM4_ESM.pdf (56 kb)
Supplementary material 4 (PDF 55 kb)


  1. Balon, E. K., 1977. The golden mudsuckers (Labeo spp.) from above and below the Victoria Falls: Sibling species along different invasion routes. Hydrobiologia 53: 3–12.CrossRefGoogle Scholar
  2. Bruford, M. W., O. Hanotte, J. F. Y. Brookfield & T. Burke, 1998. Multilocus and single-locus DNA fingerprinting; molecular genetic analysis of populations, a practical approach. In Hoelzel A. R. (eds), Oxford University Press, Oxford: 287–336.Google Scholar
  3. Cotterill, F. P. D. & M. J. de Wit, 2011. Geoecodynamics and the Kalahari epeirogeny: linking its genomic record, tree of life and palimpsest into a unified narrative of landscape evolution. South African Journal of Geology 114: 489–514.CrossRefGoogle Scholar
  4. Crispo, E., C. Hagen, T. Glenn, G. Geneau & L. J. Chapman, 2007. Isolation and characterization of tetranucleotide microsatellite markers in a mouth-brooding haplochromine cichlid fish (Pseudocrenilabrus multicolor victoriae) from Uganda. Molecular Ecology Notes 7: 1293–1295.CrossRefGoogle Scholar
  5. Crispo, E. & L. J. Chapman, 2010. Temporal variation in population genetic structure of a riverine African cichlid fish. Journal of Heredity 101: 97–106.CrossRefPubMedGoogle Scholar
  6. Duftner, N., S. Koblmüller & C. Sturmbauer, 2005. Evolutionary relationships of the Limnochromini, a tribe of benthic deep water cichlid fishes endemic to Lake Tanganyika. Journal of Molecular Evolution 60: 277–289.CrossRefPubMedGoogle Scholar
  7. Earl, D. A. & B. M. von Holdt, 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361.CrossRefGoogle Scholar
  8. Evanno, G., S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.CrossRefPubMedGoogle Scholar
  9. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.CrossRefPubMedGoogle Scholar
  10. Goodier, S. A. M., F. P. D. Cotterill, C. O’Ryan, P. H. Skelton & M. J. de Wit, 2011. Cryptic diversity of African tigerfish (genus Hydrocynus) reveals palaeogeographic signatures of linked neogene geotectonic events. PLOS One 6: e28775.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Greenwood, P. H., 1989. The taxonomic status and phylogenetic relationships of Pseudocrenilabrus Fowler (Teleostei, Cichlidae). Ichthyological Bulletins of the J. L. B. Smith Institute of Ichthyology 54: 1–16.Google Scholar
  12. Hermann, C. M., K. M. Sefc & S. Koblmüller, 2011. Ancient origin and recent divergence of a haplochromine cichlid lineage from isolated water bodies in the East African Rift system. Journal of Fish Biology 79: 1356–1369.CrossRefPubMedGoogle Scholar
  13. Husson, F., J. Josse, S. Le & J. Mazet, 2014. FactoMineR: multivariate exploratory data analysis and data mining with R. R package version 1: 26.Google Scholar
  14. Jackson, P. B. N., 1961. The fishes of Northern Rhodesia. The government printer, Lusaka: 140.Google Scholar
  15. Jackson, P. B. N., 1986. Fish of the Zambezi system. In Davies, B. R. & K. F. Walker (eds), The ecology of river systems. W. Junk, Dordrecht: 269–288.Google Scholar
  16. Joyce, D. A., D. H. Lunt, R. Bills, G. F. Turner, C. Katongo, N. Duftner, C. Sturmbauer & O. Seehausen, 2005. An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature 435: 90–95.CrossRefPubMedGoogle Scholar
  17. Joyce, D. A., D. H. Lunt, M. J. Genner, G. F. Turner, R. Bills & O. Seehausen, 2011. Repeated colonization and hybridization in Lake Malawi cichlids. Current Biology 21: R108–R109.CrossRefPubMedGoogle Scholar
  18. Katoh, K., K. Misawa, K. Kuma & T. Miyata, 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Katongo, C., S. Koblmüller, N. Duftner, L. Makasa & C. Sturmbauer, 2005. Phylogeography and speciation in the Pseudocrenilabrus philander species complex in Zambian rivers. Hydrobiologia 542: 221–233.CrossRefGoogle Scholar
  20. Katongo, C., S. Koblmüller, N. Duftner, L. Mumba & C. Sturmbauer, 2007. Evolutionary history and biogeographic affinities of the serranochromine cichlids in Zambian rivers. Molecular Phylogenetics and Evolution 45: 326–338.CrossRefPubMedGoogle Scholar
  21. Kellogg, K. A., J. A. Markert, J. R. Stauffer & T. D. Kocher, 1995. Microsatellite variation demonstrates multiple paternity in lekking cichlid fishes from Lake Malawi, Africa. Proceedings of the Royal Society B 260: 79–84.CrossRefGoogle Scholar
  22. Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353–357.CrossRefPubMedGoogle Scholar
  23. Koblmüller, S., U. K. Schliewen, N. Duftner, K. M. Sefc, C. Katongo & C. Sturmbauer, 2008a. Age and spread of the haplochromine cichlid fishes in Africa. Molecular Phylogenetics and Evolution 49: 153–169.CrossRefPubMedGoogle Scholar
  24. Koblmüller, S., K. M. Sefc, N. Duftner, C. Katongo, T. Tomljanovic & C. Sturmbauer, 2008b. A single mitochondrial haplotype and nuclear genetic differentiation in sympatric colour morphs of a riverine cichlid fish. Journal of Evolutionary Biology 21: 362–367.PubMedGoogle Scholar
  25. Koblmüller, S., W. Salzburger, B. Obermüller, E. Eigner, C. Sturmbauer & K. M. Sefc, 2011. Separated by sand, fused by dropping water: habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations in Lake Tanganyika. Molecular Ecology 20: 2272–2290.CrossRefPubMedGoogle Scholar
  26. Koblmüller, S., C. Katongo, H. Phiri & C. Sturmbauer, 2012. Past connection of the upper reaches of a Lake Tanganyika tributary with the upper Congo drainage suggested by genetic data of riverine cichlid fishes. African Zoology 47: 182–186.CrossRefGoogle Scholar
  27. Kocher, T. D., 2004. Adaptive evolution and explosive speciation: The cichlid fish model. Nature Reviews Genetics 5: 288–298.CrossRefPubMedGoogle Scholar
  28. Kolbe, J. J., R. E. Glor, L. R. G. Schettino, A. C. Lara, A. Larson & J. B. Losos, 2004. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431: 177–181.CrossRefPubMedGoogle Scholar
  29. Lee, W. J., J. Conroy, W. H. Howel & T. D. Kocher, 1995. Structure and evolution of teleost mitochondrial control regions. Journal of Molecular Evolution 41: 54–66.CrossRefPubMedGoogle Scholar
  30. Loiselle, P. V., 1982. Pseudocrenilabrus; the dwarf African mouthbrooders, part one: the Pseudocrenilabrus multicolor complex. Freshwater and Marine Aquarium 51(30–35): 59–63.Google Scholar
  31. Lucek, K., D. Roy, E. Bezault, A. Sivasundar & O. Seehausen, 2010. Hybridization between distant lineages increases adaptive variation during a biological invasion: stickleback in Switzerland. Molecular Ecology 19: 3995–4011.CrossRefPubMedGoogle Scholar
  32. Mardia, K. V., J. Kent & J. Bibby, 1979. Multivariate analysis. Academic Press, New York.Google Scholar
  33. Maeda, K., H. Takeshima, S. Mizoiri, N. Okada, M. Nishida & H. Tachida, 2008. Isolation and characterization of microsatellite loci in the cichlid fish in Lake Victoria, Haplochromis chilotes. Molecular Ecology Resources 8: 428–430.CrossRefPubMedGoogle Scholar
  34. Matschiner, M. & W. Salzburger, 2009. TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25: 1982–1983.CrossRefPubMedGoogle Scholar
  35. Meyer, A., J. M. Morrissey & M. Schartl, 1994. Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny. Nature 368: 539–541.CrossRefPubMedGoogle Scholar
  36. McGlue, M. M., K. E. Lezzar, A. S. Cohen, J. M. Russell, J. J. Tiercelin, A. A. Felton, E. Mbede & H. H. Nkotagu, 2008. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. Journal of Paleolimnology 40: 635–653.CrossRefGoogle Scholar
  37. Muschick, M., A. Indermaur & W. Salzburger, 2012. Convergent Evolution within an Adaptive Radiation of Cichlid Fishes. Current biology 22: 2362–2368.CrossRefPubMedGoogle Scholar
  38. Poll, M., 1967. Contribution à la faune ichthyologique de l'Angola. Publicações. Culturais da Companhia de Diamantes Angola 75: 1–381.Google Scholar
  39. Posada, D., 2008. jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.CrossRefPubMedGoogle Scholar
  40. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multi-locus genotype data. Genetics 155: 945–959.PubMedCentralPubMedGoogle Scholar
  41. R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  42. Rambaut A., M. A. Suchard, D. Xie & A. J. Drummond, 2013. Tracer v1.6.
  43. Rohlf, F. J., 2008. TPSDIG, Version 2.11. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook.
  44. Rohlf, F. J. & D. E. Slice, 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39: 40–59.Google Scholar
  45. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. Google Scholar
  46. Salzburger, W., 2009. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Molecular Ecology 18: 169–185.CrossRefPubMedGoogle Scholar
  47. Salzburger, W., T. Mack, E. Verheyen & A. Meyer, 2005. Out of Tanganyika: Genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evolutionary Biology 5: 17.CrossRefPubMedCentralPubMedGoogle Scholar
  48. Salzburger, W., H. Niederstätter, A. Brandstätter, B. Berger, W. Parson, J. Snoeks & C. Sturmbauer, 2006. Color-assortative mating in the cichlid species Tropheus moorii from Lake Tanganyika, East Africa. Proceedings of the Royal Society London B-Biological Sciences 273: 257–266.CrossRefGoogle Scholar
  49. Santos, M. E. & W. Salzburger, 2012. How cichlids diversify. Science 338: 619–621.CrossRefPubMedGoogle Scholar
  50. Schwarzer, J., E. R. Swartz, E. Vreven, J. Snoeks, F. P. D. Cotterill, B. Misof & U. K. Schliewen, 2012. Repeated trans-watershed hybridization among haplochromine cichlids (Cichlidae) was triggered by Neogene landscape evolution. Proceedings of the Royal Society B 279: 4389–4398.CrossRefPubMedCentralPubMedGoogle Scholar
  51. Schluter, D., 2000. The ecology of adaptive radiation. Oxford University Press, New York.Google Scholar
  52. Scott, L., 2005. Bangweulu-Mweru. In M. L. Thieme, R. Abell, M. L. Stiassny, P. Skelton, B. Lehner, E. Dinerstein, G. G. Teugels, N. Burgess, A. K. Toham & D. Olson (eds), Freshwater ecoregions of Africa and Madagascar: a conservation assessment. Island Press, New York: 185–186.Google Scholar
  53. Seegers, L., 1996. The fishes of the Lake Rukwa drainage. Annales du Musée royal de l’Afrique Centrale. Sciences zoologiques, Tervuren.Google Scholar
  54. Seehausen, O., 2004. Hybridization and adaptive radiation. Trends in Ecology and Evolution 19: 198–207.CrossRefPubMedGoogle Scholar
  55. Seehausen, O., 2006. African cichlid fish: a model system in adaptive radiation research. Proceedings of the Royal Society B 273: 1987–1998.CrossRefPubMedCentralPubMedGoogle Scholar
  56. Skelton, P. H., 1991. Pseudocrenilabrus. In Daget, J., J. P. Gosse, G. G. Teugels & D. F. E. T. van den Audenaerde (eds), Check-list of freshwater fishes of Africa (CLOFFA). ISNB, Brussels; MRAC, Tervuren; and ORSTOM, Paris, 4: 394–398.Google Scholar
  57. Skelton, P. H., 1993. Scientific and common names of southern African freshwater fishes. J. L. B. Smith Institute of Ichthyology, Grahamstown:1–34.Google Scholar
  58. Skelton, P. H., 1994. Diversity and distribution of freshwater fishes in East and Southern Africa. Annales du Musée de la République de l’Afrique Centrale, Zoologique 275: 95–131.Google Scholar
  59. Stankiewics, J. & M. de Wit, 2006. A proposed drainage evolution model for Central Africa—did the Congo flow east? Journal of African Earth Sciences 44: 75–84.CrossRefGoogle Scholar
  60. Stelkens, R. B. & O. Seehausen, 2009. Phenotypic divergence but not genetic distance predicts assortative mating among species of a cichlid fish radiation. Journal of Evolutionary Biology 22: 1679–1694.CrossRefPubMedGoogle Scholar
  61. Taylor, M., F. Meardon, G. F. Turner, O. Seehausen, H. Mrosso & C. Rico, 2002. Characterization of tetranucleotide microsatellite loci in a Lake Victorian, haplochromine cichlid fish: a Pundamilia × Pundamilia nyererei hybrid. Molecular Ecology Notes 2: 443–445.CrossRefGoogle Scholar
  62. Thys van den Audenaerde, D. F. E., 1994. Introduction of aquatic species into Zambian waters, and their importance for aquaculture and fisheries. Aquaculture for Local Community Development Programme, field document no. 24.Google Scholar
  63. Tobler, M. & E. W. Carson, 2010. Environmental variation, hybridization, and phenotypic diversification in Cuatro Ciénegas pupfishes. Journal of Evolutionary Biology 23(7): 1475–1489.CrossRefPubMedGoogle Scholar
  64. Turner, G. F., O. Seehausen, M. E. Knight, C. J. Allender & R. L. Robinson, 2001. How many species of cichlid fishes are there in African lakes? Molecular Ecology 10: 793–806.CrossRefPubMedGoogle Scholar
  65. Tweddle, D. & P. H. Skelton, 2008. New species of ‘Barbus’ and Labeobarbus (Teleostei: Cyprinidae) from the South Rukuru River, Malawi, Africa. Smithiana Bulletin 8: 25–39.Google Scholar
  66. Twentyman-Jones, V., A. J. Ribbink & D. Voorvelt, 1997. Colour clues to incipient speciation of Pseudocrenilabrus philander (Teleostei, Cichlidae). South African Journal of Science 93: 529–537.Google Scholar
  67. Van Oppen, M. J. H., Rico C., Deutsch, J. C., G. F. Turner  & G. M. Hewitt, 1997. Isolation and characterization of microsatellite loci in the cichlid fish Pseudotropheus zebra. Molecular Ecology 6: 387–388. Google Scholar
  68. Van Steenberge, M., E. Vreven & J. Snoeks, 2014. The fishes of the Upper Luapula area (Congo basin): a fauna of mixed origin. Ichthyological Exploration of Freshwaters 24: 289–384.Google Scholar
  69. Verheyen, E., W. Salzburger, J. Snoeks & A. Meyer, 2003. On the origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300: 325–329.CrossRefPubMedGoogle Scholar
  70. Villesen, P., 2007. FaBox: an online toolbox for fasta sequences. Molecular Ecology Notes 7: 965–968.CrossRefGoogle Scholar
  71. Wagner, C. E., L. J. Harmon & O. Seehausen, 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487: U124–U366.CrossRefGoogle Scholar
  72. Webb, P., 1984. Body form, locomotion and foraging in aquatic vertebrates. American Zoologist 24: 107–120.Google Scholar
  73. Weir, B. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • B. Egger
    • 1
  • Y. Klaefiger
    • 1
  • A. Indermaur
    • 1
  • S. Koblmüller
    • 2
  • A. Theis
    • 1
  • S. Egger
    • 1
  • T. Näf
    • 1
  • M. Van Steenberge
    • 3
    • 4
  • C. Sturmbauer
    • 2
  • C. Katongo
    • 5
  • W. Salzburger
    • 1
  1. 1.Zoological InstituteUniversity of BaselBaselSwitzerland
  2. 2.Department of ZoologyKarl-Franzens University of GrazGrazAustria
  3. 3.Zoology Department, IchthyologyRoyal Museum for Central AfricaTervurenBelgium
  4. 4.Laboratory of Biodiversity and Evolutionary Genomics, Department of BiologyKatholieke Universiteit LeuvenLouvainBelgium
  5. 5.Department of Biological SciencesUniversity of ZambiaLusakaZambia

Personalised recommendations