, Volume 736, Issue 1, pp 83–97 | Cite as

Rapid recovery of benthic invertebrates downstream of hyperalkaline steel slag discharges

  • S. L. Hull
  • U. V. Oty
  • W. M. MayesEmail author
Primary Research Paper


This study assesses the physical and chemical characteristics of hyperalkaline steel slag leachate from a former steelworks on two streams in England and their impacts on benthic invertebrate communities. Using multivariate methods (CCA), we related invertebrate richness and diversity with chemical parameters along the environmental gradient from point sources to less impacted sites downstream. Point discharges are characterised by high pH (10.6–11.5), high ionic strength (dominated by Ca–CO3–OH waters), elevated trace elements (notably Li, Sr and V) and high rates of calcium carbonate precipitation. This combination of stressors gives rise to an impoverished benthic invertebrate community in source areas. The total abundance, taxonomic richness and densities of most observed organisms were strongly negatively correlated with water pH. Analysis using biological pollution monitoring indices (e.g. BMWP and Functional Feeding Groups) shows the system to be highly impacted at source, but when pH approaches values close to aquatic life standards, some 500 m downstream, complex biological communities become established. In addition to showing the rapid recovery of invertebrate communities downstream of the discharges, this study also provides a baseline characterisation of invertebrate communities at the extreme alkaline range of the pH spectrum.


Invertebrates Hyperalkaline Steel slag Leachate Community analysis Monitoring 



Part of this work was funded by the UK Natural Environment Research Council (NERC) under Grant NE/K015648/1. Bob Knight is thanked for laboratory analysis, while we are grateful to Katherine Abel, Áron Anton, Alex Riley, Tom Shard and Carl Thomas for field support.

Supplementary material

10750_2014_1894_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)


  1. Auer, M. T., N. A. Johnson, M. R. Penn & S. W. Effler, 1996. Pollutant sources, depositional environment and the surficial sediments of Onondaga Lake, New York. Journal of Environmental Quality 25: 46–55.CrossRefGoogle Scholar
  2. Ball, J. W. & D. K. Nordstrom, 1991. User’s Manual for WATEQ4F with Revised Thermodynamic Database and Test Cases for Calculating Speciation of Major, Trace and Redox Elements in Natural Waters. U.S. Geological Survey Water Resources Investigation, Report 91-183.Google Scholar
  3. Berezina, N. A., 2001. Influence of ambient pH on freshwater invertebrates under experimental conditions. Russian Journal of Ecology 32(5): 343–351.CrossRefGoogle Scholar
  4. Bradley, D. C. & S. J. Ormerod, 2002. Long-term effects of catchment liming on invertebrates in upland streams. Freshwater Biology 47: 161–171.CrossRefGoogle Scholar
  5. Buchman, M.F., 2006. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Seattle WA. Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration, 12pp.Google Scholar
  6. Buchman, M. F., 2008. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Seattle WA. Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration.Google Scholar
  7. Burke, I. T., R. G. Mortimer, S. Palaniyandi, R. A. Whittleston, C. L. Lockwood, D. J. Ashley & D. I. Stewart, 2012a. Biogeochemical reduction processes in a hyper-alkaline leachate affected soil profile. Geomicrobiology Journal 29: 769–779.CrossRefGoogle Scholar
  8. Burke, I. T., W. M. Mayes, C. L. Peacock, A. P. Brown, A. P. Jarvis & K. Gruiz, 2012b. Speciation of arsenic, chromium and vanadium in red mud samples from the Ajka spill site, Hungary. Environmental Science & Technology 46: 3085–3092.CrossRefGoogle Scholar
  9. Cairns, J., K. L. Dickson, & J. S. Crossman, 1972. The biological recovery of the Clinch River following a fly ash pond spill. 25th Industrial Waste Conference Proceedings. Purdue University, West Lafayette, Indiana, USA: 182–192.Google Scholar
  10. Chaurand, P., J. Rose, V. Briois, L. Olivi, J.-L. Hazemann, O. Proux & J.-Y. Bottero, 2007. Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach. Journal of Hazardous Materials 139: 537–542.PubMedCrossRefGoogle Scholar
  11. Chiffoleau, J.-F., L. Chavaud, D. Amouroux, A. Barats, A. Dufour, C. Pecheyran & N. Roux, 2004. Nickel and vanadium contamination of benthic invertebrates following the “Erika” wreck. Aquatic Living Resources 17: 273–280.CrossRefGoogle Scholar
  12. Cormier, S. M., G. W. Suter II & L. Zheng, 2013. Derivation of a benchmark for freshwater ionic strength. Environmental Toxicology and Chemistry 32(2): 263–271.PubMedCrossRefGoogle Scholar
  13. Cornelis, G., C.A. Johnson, T. Van Gerven, & C. Vandecasteele, 2008. Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review. Applied Geochemistry 23: 955–976.Google Scholar
  14. Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.CrossRefGoogle Scholar
  15. Czerniawska-Kusza, I., 2005. Comparing modified biological working party score system and several biological indices based on macro-invertebrates for water quality. Limnologica 25: 169–176.CrossRefGoogle Scholar
  16. Dellantonio, A., W. J. Fitz, F. Repmann & W. W. Wenzel, 2010. Disposal of coal combustion residues in terrestrial systems. Journal of Environmental Quality 39: 761–775.PubMedCrossRefGoogle Scholar
  17. Edwards, P. J. & J. B. Maidens, 1995. Investigations into the Impacts of Ferruginous Minewater Discharges in the Pelenna Catchment on Salmonid Spawning Gravels. (Environment Agency) Welsh Region Internal Report No. PL/EAW/95/6. National Rivers Authority, Cardiff, UK.Google Scholar
  18. Effler, S. W., 1987. The impact of a chloro-alkali plant on Onondaga Lake and adjoining systems. Water, Air and Soil Pollution 33: 85–115.CrossRefGoogle Scholar
  19. Effler, S. W. & C. M. Brooks, 1998. Dry weight deposition in polluted Onondaga Lake, New York, USA. Water, Air and Soil Pollution 103: 389–404.Google Scholar
  20. Effler, S. W., C. M. Brooks, J. M. Addess, S. M. Doerr, M. L. Storey & B. A. Wagner, 1991. Pollutant loadings from Solvay waste beds Lower Ninemile Creek, New York. Water, Air and Soil Pollution 55: 427–444.CrossRefGoogle Scholar
  21. Effler, S. W., C. M. Matthews Brooks & C. T. Driscoll, 2001. Changes in deposition of phytoplankton constituents in a Ca2+ polluted lake. Environmental Science and Technology 35: 3082–3088.PubMedCrossRefGoogle Scholar
  22. Fichet, D. & P. Miramand, 1998. Vanadium toxicity to three marine invertebrates larvae: Crassostrea gigas, Paracentrotus lividus and Artemia salina. Chemosphere 37: 1363–1368.CrossRefGoogle Scholar
  23. Fjellheim, A. & G. G. Raddum, 1995. Benthic animal response after liming of three South Norwegian rivers. Water, Air and Soil Pollution 85: 931–936.CrossRefGoogle Scholar
  24. Ford, D. C. & P. W. Williams, 1991. Karst Geomorphology and Hydrology. Chapman and Hall, Cambridge.Google Scholar
  25. Garcia-Criado, F., A. Tome, F.J. Vega & C. Antolin, 1999. Performance of some diversity and biotic indices in rivers affected by coal mining in northwestern Spain. Hydrobiologia 394: 209-217.Google Scholar
  26. Gerke, T. L., K. G. Scheckel & J. B. Maynard, 2010. Speciation and distribution of vanadium in drinking water iron pipe corrosion by-products. Science of the Total Environment 408: 5845–5853.PubMedCrossRefGoogle Scholar
  27. Heino, J., 2005. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biology 50: 1578–1587.CrossRefGoogle Scholar
  28. Hem, J. D., 1985. Study and interpretation of the chemical characteristics of natural water. USGS Water Supply Paper 2254. United States Geological Survey, Alexandria, Virginia, USA.Google Scholar
  29. Jarvis, A. P. & P. L. Younger, 1997. Dominating chemical factors in mine water induced impoverishment of the invertebrate fauna of two streams in the Durham Coalfield, UK. Chemistry and Ecology 13: 249–270.CrossRefGoogle Scholar
  30. Jones, A., M. Rogerson, G. Greenway, H. A. B. Potter & W. M. Mayes, 2013. Mine water geochemistry and metal flux in a major historic Pb–Zn–F orefield, the Yorkshire Pennines, UK. Environmental Science and Pollution Research. doi: 10.1007/s11356-013-1513-4.Google Scholar
  31. Khoury, H. N., E. Salameh & Q. Abdul-Jaber, 1985. Characteristics of an unusual highly alkaline water from the Maqarin area, northern Jordan. Journal of Hydrology 81: 79–91.CrossRefGoogle Scholar
  32. Klebercz, O., W. M. Mayes, V. Feigl, A. Anton, A. P. Jarvis & K. Gruiz, 2012. Ecotoxicity of fluvial sediments downstream of the Ajka red mud spill, Hungary. Journal of Environmental Monitoring 14: 2063–2071.PubMedCrossRefGoogle Scholar
  33. Koryak, M., L. J. Stafford, R. J. Reilly & M. P. Magnuson, 2002. Impacts of steel mill slag leachate on the water quality of a small Pennsylvania stream. Journal of Freshwater Ecology 17: 461–465.CrossRefGoogle Scholar
  34. Kruse, N. A., L. DeRose, R. Korenowsky, J. R. Bowman, D. Lopez, K. Johnson & E. Rankin, 2013. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery. Journal of Environmental Management 128: 1000–1011.PubMedCrossRefGoogle Scholar
  35. Kszos, L. A. & A. J. Stewart, 2003. Review of lithium in the aquatic environment: distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology 12: 439–447.PubMedCrossRefGoogle Scholar
  36. Layer, K., A. G. Hildrew & G. Woodward, 2013. Grazing and detritivory in 20 stream food webs across a broad pH gradient. Oecologia 171: 459–471.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Madsen, J. D., J. A. Bloomfield, J. W. Sutherland, L. W. Eichler & C. W. Boylen, 1996. The aquatic macrophyte community of Onondaga Lake: field survey and plant growth bioassays of lake sediments. Lake and Reservoir Management 12: 73–79.CrossRefGoogle Scholar
  38. Mason, C. F., 2002. The Biology of Freshwater Pollution, 4th ed. Pearson Education, Essex.Google Scholar
  39. Mayes, W. M., A. R. G. Large & P. L. Younger, 2005. The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland: Thrislington, UK. Environmental Pollution 138: 444–455.CrossRefGoogle Scholar
  40. Mayes, W. M., P. L. Younger & J. Aumônier, 2006. Buffering of alkaline steel slag across a natural wetland. Environmental Science and Technology 40: 1237–1243.Google Scholar
  41. Mayes, W. M., P. L. Younger & J. Aumônier, 2008. Hydrogeochemistry of alkaline steel slag leachates in the UK. Water, Air and Soil Pollution 195: 35–50.CrossRefGoogle Scholar
  42. Mayes, W. M., L. C. Batty, P. L. Younger, A. P. Jarvis, M. Kõiv, C. Vohla & Ü. Mander, 2009. Wetland treatment at extremes of pH – a review. Science of the Total Environment 407: 3944–3957.PubMedCrossRefGoogle Scholar
  43. Mayes, W. M., A. P. Jarvis, I. T. Burke, M. Walton, V. Feigl, O. Klebercz & K. Gruiz, 2011. Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary. Environmental Science and Technology 45(12): 5147–5155.PubMedCrossRefGoogle Scholar
  44. Miliša, M., R. M. Kepčija, I. Radanović, A. Ostojić & I. Habdija, 2006. The impact of aquatic macrophyte (Salix sp. and Cladium mariscus (L.) Pohl.) removal on habitat conditions and macroinvertebrates of tufa barriers (Plitvice Lakes, Croatia). Hydrobiologia 573(1): 183–197.CrossRefGoogle Scholar
  45. Monteith, D. T., A. G. Hildrew, R. J. Flower, P. J. Raven, W. R. B. Beaumont, P. Collen, A. M. Kreiser, E. M. Shilland & J. H. Winterbottom, 2005. Biological responses to the chemical recovery of acidified fresh waters in the UK. Environmental Pollution 137: 83–101.PubMedCrossRefGoogle Scholar
  46. Parkhurst, D. L. & C. A. J. Appelo, 1999. User’s Guide to PHREEQC–A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Water-Resources Investigations Report 99-4259.Google Scholar
  47. Pawley, S. M., M. Dobson & M. Fletcher, 2011. Guide to British Freshwater Macroinvertebrates for Biotic Assessment. Freshwater Biological Association, Ambleside.Google Scholar
  48. Pires, A. M., I. G. Cowx & M. Coelho, 2000. Benthic macroinvertebrate communities of intermittent streams in the middle reaches of the Guadiana Basin (Portugal). Hydrobiologia 435: 167–175.CrossRefGoogle Scholar
  49. R Development Core Team, 2012. R: A Language and Environment for Statistical Computing, 3-900051-07-0R. Foundation for Statistical Computing, Vienna, Austria [available on internet at].
  50. Rawer-Jost, C., J. Böhmer, J. Blank & H. Rahmann, 2000. Macroinvertebrate functional feeding group methods in ecological assessment. Hydrobiologia 422(423): 225–232.CrossRefGoogle Scholar
  51. Roadcap, G. S., W. R. Kelly & C. M. Bethke, 2005. Geochemistry of extremely alkaline (pH > 12) ground water in slag-fill aquifer. Ground Water 43: 806–816.PubMedCrossRefGoogle Scholar
  52. Ross, M. R., E. S. Long & D. S. Dropkin, 2008. Response of macroinvertebrate communities to remediation-stimulating conditions in Pennsylvania streams influenced by acid mine drainage. Environmental Monitoring and Assessment 145: 323–338.PubMedCrossRefGoogle Scholar
  53. Schmidt-Kloiber A. & D. Hering (eds.), 2012. The Taxa and Autecology Database for Freshwater Organisms, Version 5.0 [available on internet at accessed on 26 July 2013].
  54. Schöll, K. & G. Szövényi, (2011). Planktonic rotifer assemblages of the Danube River at Budapest after the red sludge pollution in Hungary. Bulletin of Environmental Contamination and Toxicology 87(2): 124–128.Google Scholar
  55. Short, T. M., J. A. Black & W. J. Birge, 1990. Effects of acid mine drainage on the chemical and biological character of an alkaline headwater stream. Archives of Environmental Contamination and Toxicology 19: 241–248.CrossRefGoogle Scholar
  56. Stewart, D. I., I. T. Burke & R. J. G. Mortimer, 2007. Stimulation of microbially mediated chromate reduction in alkaline soil–water systems. Geomicrobiology Journal 24: 655–669.CrossRefGoogle Scholar
  57. Takeno, N., 2005. Atlas of Eh-pH diagrams: intercomparison of thermodynamic databases. Geological Survey of Japan Open File Report no. 149.Google Scholar
  58. Wilkie, M. P. & C. M. Wood, 1996. The adaptations of fish to extremely alkaline environments. Comparative Biochemistry and Physiology 113B: 665–673.CrossRefGoogle Scholar
  59. Zaihua, L., U. Svensson, W. Dreybrodt, Y. Daoxian & D. Buhmann, 1995. Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: field measurements and theoretical prediction of deposition rates. Geochimica et Cosmochimicha Acta 59: 3087–3097.CrossRefGoogle Scholar
  60. Zuur, A. F., E. N. Ieno & G. M. Smith, 2009. Analysing Ecological Data. Springer, Germany.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Centre for Environmental and Marine SciencesUniversity of HullScarboroughUK

Personalised recommendations