Advertisement

Response of the meiofaunal annelid Saccocirrus pussicus (Saccocirridae) to sandy beach morphodynamics

  • 381 Accesses

  • 10 Citations

Abstract

Interstitial annelids in the family Saccocirridae live in the extremely turbulent and dynamic swash zone of exposed sandy beaches. We examine herein the relationship between distribution patterns of Saccocirrus pussicus du Bois-Reymond Marcus 1948 and morphodynamics, hydrodynamic zones, and environmental variables at beaches sampled along the Brazilian Atlantic coast. The occurrence and the abundance of S. pussicus at regional scale were positively correlated with the presence of a steep slope, large waves and coarse sand, which are characteristic of reflective beaches. On a local scale, S. pussicus occurred at the swash zone and breaking surf zone of reflective beaches. On a microscale, it preferred the upper 20 cm of the swash zone sediment. Saccocirrus pussicus prefers hydrodynamic zones, which change temporally, suggesting dependence with the dynamics of the surging and plunging waves. The coupling of morphological and behavioral adaptations of S. pussicus to beach morphodynamics is crucial for understanding its surfing life strategies within turbulent environments.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aagaard, T. & G. Masselink, 1999. The surf zone. In Short, A. D. (ed.), Handbook of Beach and Shoreface Morphodynamics. John Wiley and Sons Ltd, Chichester: 72–113.

  2. Aiyar, G. & K. H. Alikunhi, 1944. On some archiannelids of Madras coast. Proceedings of the National Institute of Sciences of India 10(1): 113–139.

  3. Alves, J. H. G. M. & E. Melo, 2001. Measurement and modeling of wind waves at the northern coast of Santa Catarina, Brazil. Brazilian Journal of Oceanography 49(1/2): 13–28.

  4. Armenante, Z., 1903. Protodrilus hypoleucus n. sp. Monitore Zoologico Italiano 14: 221–222.

  5. Barros, F., C. A. Borzone & S. Rosso, 2001. Macroinfauna of six beaches near Guaratuba bay, Southern Brazil. Brazilian Archives of Biology and Technology 44: 351–364.

  6. Battjes, J. A., 1974. Surf similarity. In Proceedings of 14th Coastal Engineering Conference, Copenhagen, Denmark. American Society of Civil Engineers, New York: 466–480.

  7. Bauer, B. O. & J. R. Allen, 1995. Beach steps: an evolutionary perspective. Marine Geology 123: 143–166.

  8. Boaden, P. J. S., 1962. Colonization of graded sand by an interstitial fauna. Cahiers de Biologie Marine 3: 245–248.

  9. Boaden, P. J. S., 1968. Water movement—a dominant factor in interstitial ecology. Sarsia 34: 125–136.

  10. Bobretzky, N., 1872. Saccocirrus papillocercus gen. nov. sp. nov. (in Russian). Mémoire S des Naturalistes de Kiev 2: 211–259.

  11. Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J.-S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.

  12. Borzone, C. A., J. R. B. Souza & A. G. Soares, 1996. Morphodynamic influence on the structure of inter and subtidal macrofaunal communities of subtropical sandy beaches. Revista Chilena Historia Natural 69: 565–577.

  13. Brown, R., 1981. Saccocirridae (Annelida: Polychaeta) from the central coast of New South Wales. Australian Journal of Marine and Freshwater Research 32: 439–456.

  14. Brown, A. C., J. M. E. Stenton-Dozey & E. R. Trueman, 1989. Sandy beach bivalves and gastropods: a comparison between Donax serra and Bullia digitalis. Advances in Marine Biology 25: 179–247.

  15. Buchanan, J. B., 1984. Sediment analysis. In Holme, N. A. & A. D. McIntyre (eds.), Methods for the Study of Marine Benthos. Blackwell Scientific Publications, Boston: 41–65.

  16. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practice Information-Theoretic Approach. Springer, New York.

  17. Butt, T., P. Russell & I. L. Turner, 2001. The influence of swash infiltration–exfiltration on beach face sediment transport: onshore or offshore? Coastal Engineering 42(1): 35–52.

  18. Camargo, M. G., 2006. Sysgran: um sistema de código aberto para análises granulométricas do sedimento. Revista Brasileira de Geociências 36(2): 371–378.

  19. Caputo, H. P., 1980. Mecânica de solos e suas aplicações. Editora Livros Técnicos e Científicos, Rio de Janeiro.

  20. Carvalho, J. L. B., A. H. F. Klein, C. A. F. Schettini & P. M. Jabor, 1996. Marés meteorológicas em Santa Catarina: influência do vento na determinação de parâmetros de projetos para obras costeiras. In Proc 3th Simpósio sobre Oceanografia, São Paulo: 380.

  21. Dauer, D. M., C. A. Maybury & R. M. Ewing, 1981. Feeding behaviour and general ecology of several spionid polychaetes from the Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 54: 21–38.

  22. Dean, R. G., 1973. Heuristic models of sand transport in the surf zone. In Conferences on Engineering Dynamics in the Surf Zone. Sydney, NSW, Proceeding: 208–214.

  23. Defeo, O. & A. McLachlan, 2005. Patterns, processes and regulatory mechanisms in sandy beach macrofauna. Marine Ecology Progress Series 295: 1–20.

  24. Di Domenico, M., A. Martínez, C. Amaral, P.C. Lana & K. Worsaae, 2014a. Saccocirridae (Annelida) from the southern and southeastern Brazilian coasts. Marine Biodiversity. http://dx.doi.org/10.1007/s12526-014-0208-5.

  25. Di Domenico, M., A. Martínez, P. C. Lana & K. Worsaae, 2014b. Molecular and morphological phylogeny of Saccocirridae (Annelida) reveals two cosmopolitan clades with specific habitat preferences. Molecular Phylogenetics and Evolution. http://dx.doi.org/10.1016/j.ympev.2014.02.003.

  26. Di Domenico, M., P. C. Lana & A. R. S. Garraffoni, 2009. Distribution patterns of interstitial polychaetes in sandy beaches of southern Brazil. Marine Ecology 30: 47–62.

  27. Di Domenico, M., A. Martínez, P. C. Lana & K. Worsaae, 2013. Protodrilus (Protodrilidae, Annelida) from the southern and southeastern Brazilian coasts. Helgoland Marine Research 67: 733–748.

  28. du Bois-Reymond Marcus, E., 1948. Further archiannelids from Brazil. Comunicaciones Zoologicas del Museu de Historia Natural de Montevideo 2: 69–83.

  29. Dugan, J. E., D. M. Hubbard & M. Lastra, 2000. Burrowing abilities and swash behavior of three crabs, Emerita analoga Stimpson, Blepharipoda occidentalis Randall, and Lepidopa californica Efiford (Anomura, Hippoidea), of exposed sandy beaches. Journal of Experimental Marine Biology and Ecology 255: 229–245.

  30. Ellers, O., 1995. Form and motion of Donax variabilis in flow. Biological Bulletin 189: 138–147.

  31. Faria, J. C. & C. G. B. Demétrio, 2013. bpca: Biplot of Multivariate Data Based on Principal Components Analysis. ESALQ, USP, Brasil.

  32. Foy, M. S. & D. Thistle, 1991. On vertical distribution of a benthic harpacticoid copepod: field, laboratory, and flume results. Journal of Experimental Marine Biology and Ecology 153: 153–164.

  33. Gelder, S. R. & R. F. Uglow, 1973. Feeding and gut structure in Nerilla antennata (Annelida: Archiannelida). Journal of Zoology 171: 225–237.

  34. Giere, O., 2009. Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments. Springer, Heidelberg.

  35. Gilbert, E. R., M. G. Camargo & L. Sandrini-Neto, 2012. rysgran: Grain Size Analysis, Textural Classifications and Distribution of Unconsolidated Sediments. R package version 2.0. http://CRAN.R-project.org/package=rysgran.

  36. Guza, R. T. & D. L. Inman, 1975. Edge waves and beach cusps. Journal of Geophysical Research 80: 2997–3012.

  37. Higgins, R. P. & H. Thiel, 1988. Introduction to the Study of Meiofauna. Smithsonian Institution Press, Washington DC, London.

  38. Hoefel, F. G. & S. Elgar, 2003. Wave-induced sediment transport and sandbar migration. Science 299: 1885–1887.

  39. Horn, D. P. & T. Manson, 1994. Swash zone sediment transport modes. Marine Geology 120: 309–325.

  40. Jackson, D. W. T., J. A. G. Cooper & L. Del Rio, 2005. Geological control of beach morphodynamic state. Marine Geology 216: 297–314.

  41. Jesus, B., C. Mendes, V. Brotas & D. M. Paterson, 2006. Effect of sediment type on microphytobenthos vertical distribution: modelling the productive biomass and improving ground truth measurements. Journal of Experimental Marine Biology and Ecology 332(1): 60–74.

  42. Jouin, C., 1970. Recherches sur les Archiannélides interstitielles: Systématique, anatomie et développement des Protodrilidae et des Nerillidae. Thèse Doctorat, Faculté des Sciences des Paris, Paris.

  43. Jouin, C. & C. Gambi, 2007. Description of Saccocirrus goodrichi sp. nov. (Annelida: Polychaeta: Saccocirridae), a new Mediterranean species and new data on the chaetae of S. papillocercus and S. major. Cahiers de Biologie Marine 48: 381–390.

  44. Jumars, P. A. & R. F. L. Self, 1986. Gut-marker and gut-fullness methods for estimating field and laboratory effects of sediment transport on ingestion rates of deposit feeders. Journal of Experimental Marine Biology and Ecology 98: 293–310.

  45. Kihslinger, R. L. & S. A. Woodin, 2000. Food patches and a surface deposit feeding spionid polychaete. Marine Ecology Progress Series 201: 233–239.

  46. Klein, A. H. F. & J. T. Menezes, 2001. Beach morphodynamics and profile sequence for a headland bay coast. Journal of Coastal Research 17(4): 812–835.

  47. Komar, P. D., 1998. Beach Processes and Sedimentation. Prentice-Hall, Upper Saddle River, NJ.

  48. Kovach, W. L., 1998. MVSP—A Multivariate Statistical Package for Windows, Ver. 3.0. Kovach Computing Services, Pentraeth, Wales.

  49. Lorenzen, C. J., 1967. Determination of chlorophylls and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

  50. Martin, G. G., 1977. Saccocirrus sonomacus sp. nov., a new archiannelid from California. Transactions of the American Microscopical Society 96: 97–103.

  51. Martínez, A., M. Di Domenico, K. Jörger, J. L. Norenburg & K. Worsaae, 2013a. Description of three new species of Protodrilus (Annelida, Protodrilidae) from Central America. Marine Biology Research 9(7): 676–691.

  52. Martínez, A., M. Di Domenico & K. Worsaae, 2013b. Gain of palps within a lineage of ancestrally burrowing annelids (Scalibregmatidae). Acta Zoologica. doi:10.1111/azo.12039.

  53. Martínez, A., M. Di Domenico & K. Worsaae, 2013c. Evolution of cave Axiokebuita and Speleobregma (Scalibregmatidae, Annelida). Zoologica Scripta 42(6): 623–636.

  54. Masselink, G. & J. A. Puleo, 2006. Swash zone morphodynamics. Continental Shelf Research 26: 661–680.

  55. Masselink, G. & A. D. Short, 1993. The effects of tide range on beach morphodynamics and morphology: a conceptual beach model. Journal of Coastal Research 9: 785–800.

  56. Masselink, G. & I. L. Turner, 1999. The effect of tides on beach morphodynamics. In: Short, A. D. (ed.), Handbook of Beach and Shoreface Morphodynamics. Wiley, Chichester: 204–229.

  57. McCammon, R. B., 1962. Efficiencies of percentile measurements for describing the mean size and sorting of sedimentary particles. Journal of Geology 70: 453–465.

  58. McLachlan, A. & A. C. Brown, 2006. The Ecology of Sandy Shores. Academy Press, New York, NY.

  59. Meineke, T. & W. Westheide, 1979. Gezeitenabhängige Wanderungen der Interstitialfauna in einem Sandstrand der Insel Sylt (Nordsee). Mikro Meeres 75: 1–36.

  60. Miller, D. C., M. J. Bock & E. J. Turner, 1992. Deposit and suspension feeding in oscillatory flows and sediment fluxes. Journal of Marine Research 50(3): 489–520.

  61. Palmer, M. A., 1988. Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Marine Ecology Progress Series 48: 81–91.

  62. Pardo, E. V. & A. C. Z. Amaral, 2004. Feeding behaviour of Scolelepis sp. (Polychaeta: Spionidae). Brazilian Journal of Oceanography 52: 74–79.

  63. Pettermann, R. M., A. H. Amin Jr, A. C. Beaumord & L. Strefling, 2006. Geology, Southern Brazil. Journal of Coastal Research 39: 970–975.

  64. Pierantoni, U., 1907. Il genere Saccocirrus Bobretzky e le sue specie. Annuario dell’Instituto e Museo di Zoologia di Napoli 2: 1–11.

  65. Purschke, G., 1993. Structure of the prostomial appendages and the central nervous system in the Protodrilida (Polychaeta). Zoomorphology 113: 1–20.

  66. R Development Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.

  67. Ramey, P. A. & E. Bodnar, 2008. Active post-settlement selection by a deposit-feeding polychaete, Polygordius jouinae, for sands with relatively high organic content. Limnology and Oceanography 54: 1512–1520.

  68. Rodriguez, J. M., 2004. Intertidal water column meiofauna in relation to wave intensity on an exposed beach. Scientia Marina 68(1): 181–187.

  69. Rodriguez, M., N. Venturini, M. Di Domenico, A. G. Martinez & K. Worsaae, 2013. First occurrence of the interstitial polychaete Saccocirrus pussicus in exposed beaches of Uruguay. Pan-American Journal Aquatic Science 8(3): 194–198.

  70. Sandrini-Neto, L. & M. G. Camargo, 2010. GAD (General ANOVA Design): An R Package for ANOVA Designs from the General Principles. Available on CRAN.

  71. Sasaki, S., 1981. A new species of the genus Saccocirrus (Archiannelida) from Hokkaido, Northern Japan. Annotationes Zoologica Japonenses 54: 259–266.

  72. Sasaki, S. & R. Brown, 1983. Larval development of Saccocirrus uchidai from Hokkaido, Japan and Saccocirrus krusadensis from New South Wales, Australia (Archiannelida, Saccocirridae). Annotationes Zoologica Japonenses 56: 299–314.

  73. Schettini, C. A. F., J. L. Carvalho & E. Truccolo, 1999. Aspectos hidrodinâmicos da enseada da Armação de Itapocoroy, SC. Notas Técnicas da FACIMAR 3: 99–109.

  74. Short, A. D. & P. A. Hesp, 1999. Beach ecology. In Short, A. D. (ed.), Handbook of Beach and Shoreface Morphodynamics. John Wiley and Sons Ltd, London: 271–278.

  75. Skaug, H., D. Fournier, A. Nielsen, A. Magnusson & B. Bolker, 2011. glmmADMB: Generalized Linear Mixed Models Using AD Model Builder. R Package, Version 0.7. http://glmmadmb.r-forge.r-project.org, http://admb-project.org.

  76. Somerfield, P. J., R. M. Warwick & T. Moens, 2005. Meiofauna techniques. In Eleftheriou, A. & A. Mcintyre (eds), Methods for Study of Marine Benthos. Blackwell Publishing, Oxford: 229–272.

  77. Taghon, G. L. & R. R. Greene, 1992. Utilization of deposit and suspended particulate matter by benthic “interface” feeders. Limnology and Oceanography 37(7): 1370–1391.

  78. Taghon, G. L., A. R. M. Nowell & P. A. Jumars, 1980. Induction of suspension feeding in spionid polychaetes by high particulate fluxes. Science 210: 562–564.

  79. Underwood, A. J., 1997. Experiments in Ecology: Their Logical Design and Interpretation Using of Variance. Cambridge University Press, New York, NY.

  80. Vanagt, T., M. Vincx & S. Degraer, 2008. Is the burrowing performance of a sandy beach surfing gastropod limiting for its macroscale distribution? Marine Biology 155: 387–397.

  81. Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30: 377–392.

  82. Westheide, W., 2008. Polychaetes: Interstitial Families. The Linnean Society of London and the Estuarine and Coastal Science Association, London.

  83. Worsaae, K., A. Martínez & J. Núñez, 2009. Nerillidae (Annelida) from the Corona lava tube, Lanzarote, with description of Meganerilla cesari, n. sp.. Marine Biodiversity 39: 195–207.

  84. Wright, L. D. & A. D. Short, 1984. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology 56: 93–118.

  85. Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York, NY.

Download references

Acknowledgments

We are grateful to Afranio G. Neto, Carla Ozório, Cinthya S. Santos, Fabiane Gallucci, Guilherme Corte, Gustavo Fonseca, and Paulo J.P. dos Santos for their suggestions on the first draft of the manuscript. Ana Luiza G. Martins, Alessandro L. Prantoni, André Pereira Cattani, Lucas Faria, Paulo Bernardes da Costa, Reginaldo Nunes, and Veronica Oliveira were most helpful providing logistic support during field sampling. This study was supported by the Brazilian National Council for Technological and Scientific Development (CNPq—Process 140611/2008-8), which provided the PhD fellowship of MDD, and São Paulo Research Foundation (FAPESP—Process 2012/08581-0; 2013/04358-7) which provided postdoctoral fellowships and grants for MDD. We are grateful to Fernando de Pol Mayer and Leonardo Sandrini Neto for the comments to the last version of the manuscript. Brett Gonzalez helped with the revision of the English text. We also thank two anonymous reviewers for their constructive comments.

Author information

Correspondence to M. Di Domenico.

Additional information

Handling editor: Diego Fontaneto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 1130 kb)

Supplementary material 2 (MP4 1734 kb)

Supplementary material 3 (MP4 2294 kb)

Supplementary material 1 (MP4 1130 kb)

Supplementary material 2 (MP4 1734 kb)

Supplementary material 3 (MP4 2294 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Di Domenico, M., Martínez, A., Almeida, T.C.M. et al. Response of the meiofaunal annelid Saccocirrus pussicus (Saccocirridae) to sandy beach morphodynamics. Hydrobiologia 734, 1–16 (2014) doi:10.1007/s10750-014-1858-9

Download citation

Keywords

  • Interstitial annelids
  • Grain size
  • Surf-scaling parameter
  • Beach morpho- and hydrodynamics