, Volume 732, Issue 1, pp 147–159 | Cite as

Global warming effects on benthic macroinvertebrates: a model case study from a small geothermal stream

  • Ivana Živić
  • Miroslav Živić
  • Katarina Bjelanović
  • Djuradj Milošević
  • Sanja Stanojlović
  • Radoslav Daljević
  • Zoran Marković
Primary Research Paper


The aim of this study was to predict global warming effects on benthic macroinvertebrate community structure by using a small temperate geothermal stream as a model system. We collected benthic macroinvertebrates, measured physical and chemical water properties at eight localities up the Kudoški stream steep water temperature gradient, and used 11 metrics and indexes to characterize community structure. Species richness and evenness decreased, but total abundance increased with the increase of average annual water temperature (tav), with species richness being most and total abundance least sensitive to this parameter. The increase of Gastropoda relative abundance and the decrease of Ephemeroptera, Plecoptera and Trichoptera richness, respectively, were the earliest responses of taxonomic groups to tav increase. Relative abundance of Orthocladiinae decreased and that of Chironomini increased with the increase of tav. This indicates that Chironomidae are not reliable predictors of global warming effects in running waters, and that lower taxonomic levels, subfamily or tribe, are more suitable for that purpose. Changes in community structure did not linearly follow tav increase, since a great community shift was observed at tav ≈ 20°C indicating that present trends of community responses to changes in climatic conditions should not be linearly extrapolated to future warming.


Water temperature Geothermal stream Kudoški stream Biodiversity Ecological thresholds 


  1. APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.Google Scholar
  2. Alcamo, J., J. M. Moreno, B. Nováky, M. Bindi, R. Corobov, R. J. N. Devoy, C. Giannakopoulos, E. Martin, J. E. Olesen & A. Shvidenko, 2007. Europe, climate change 2007: impacts, adaptation and vulnerability. In Parry, M. L., O. F. Andersen, T. J. Carstensen, E. Hernandez-Garcia, C. M. Duarte (eds), 2008. Ecological Thresholds and Regime Shifts: Approaches and Identification. Trends in Ecology & Evolution 24: 49–57.Google Scholar
  3. Andersen, T., J. Carstensen, E. Hernandez-Garcia & C.M. Duarte, 2008. Ecological thresholds and regime shifts: approaches and identification. Trends in Ecology & Evolution 24: 49–57.Google Scholar
  4. Brinkhurst, R. O. & B. G. M. Jamieson, 1971. Aquatic Oligochaeta of the World. Oliver-Boyd, Edinburg.Google Scholar
  5. Cahill, A. E., M. E. Aiello-Lammens, M. C. Fisher-Reid, X. Hua, C. J. Karanewsky, H. Yeong Ryu, G. C. Sbeglia, F. Spagnolo, J. B. Waldron, O. Warsi & J. J. Wiens, 2012. How does climate change cause extinction? Proceedings of the Royal Society B 280: 20121890.PubMedCrossRefGoogle Scholar
  6. Chessman, B. C., 2009. Climatic changes and 13-year trends in stream macroinvertebrate assemblages in New South Wales, Australia. Global Change Biology 15: 2791–2802.CrossRefGoogle Scholar
  7. Clements, W. H., J. L. Arnold, T. M. Koel, R. Daley & C. Jean, 2011. Responses of benthic macroinvertebrate communities to natural geothermal discharges in Yellowstone National Park, USA. Aquatic Ecology 45: 137–149.CrossRefGoogle Scholar
  8. Daufresne, M., P. Bady & J. F. Fruget, 2007. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia 151: 544–559.PubMedCrossRefGoogle Scholar
  9. Daufresne, M., M. C. Roger, H. Capra & N. Lamouroux, 2003. Longterm changes within the invertebrate and fish communities of the Upper Rhône River: effects of climatic factors. Global Change Biology 10: 124–140.CrossRefGoogle Scholar
  10. Demars, B. O. L., J. R. Manson, J. S. Ólafsson, G. M. Gíslason, R. Gudmundsdóttir, G. Woodward, J. Reiss, D. E. Pichler, J. J. Rasmussen & N. Friberg, 2011. Temperature and the metabolic balance of streams. Freshwater Biology 56: 1017–1230.CrossRefGoogle Scholar
  11. Dolédec, S. & D. Chessel, 1994. Co-inertia analysis: an alternative method for studying species–environment relationships. Freshwater Biology 31: 277–294.CrossRefGoogle Scholar
  12. Dray, S., D. Chessel & J. Thioulouse, 2004. Co-inertia analysis and the linking of ecological data tables. Ecology 84: 3078–3089.CrossRefGoogle Scholar
  13. Duggan, I. C., I. K. G. Boothroyd & D. A. Speirs, 2007. Factors affecting the distribution of stream macroinvertebrates in geothermal areas: Taupo Volcanic Zone, New Zealand. Hydrobiologia 592: 235–247.CrossRefGoogle Scholar
  14. Durance, I. & S. J. Ormerod, 2007. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology 13: 942–957.CrossRefGoogle Scholar
  15. Durance, I. & S. J. Ormerod, 2009. Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates. Freshwater Biology 54: 388–405.CrossRefGoogle Scholar
  16. Durance, I. & S. J. Ormerod, 2010. Evidence for the role of climate in the local extinction of a coolwater triclad. Journal of the North American Benthological Society 29: 1367–1378.CrossRefGoogle Scholar
  17. Feio, M. J., N. C. Coimbra, M. A. S. Graça, S. J. Nichols & R. H. Norris, 2010. The influence of extreme climatic events and human disturbance on macroinvertebrate community patterns of a mediterranean stream, over 15 years. Journal of the North American Benthological Society 29: 1397–1409.CrossRefGoogle Scholar
  18. Ficetola, G. F. & M. Denoël, 2009. Ecological thresholds: an assessment of methods to identify abrupt changes in species–habitat relationships. Ecography 32: 1075–1084.CrossRefGoogle Scholar
  19. Fortin, M. J. & J. Gurevitch, 1993. Mantel-tests: spatial structure in field experiments. In Schreiner, S. M. & J. Gurevitch (eds), Design and Analysis of Ecological Experiments. Chapman & Hall, London: 342–359.Google Scholar
  20. Friberg, N., J. B. Christensen, J. S. Olafsson, G. M. Gislason, S. E. Larsen & T. L. Lauridsen, 2009. Relationship between structure and function in streams contrasting in temperature: possible impacts of climate change on running water ecosystems. Freshwater Biology 54: 2051–2068.CrossRefGoogle Scholar
  21. Glöer, P., C. Meler-Brook & O. Ostermann, 1985. Süsswassermollusken: ein Bestimmungsschlüssel für die Bundesrepublik Deutschland. Deutscher Jugendbund für Naturbeobachtung, Hamburg.Google Scholar
  22. Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.PubMedCrossRefGoogle Scholar
  23. Jacob, U., 2003. Baetis Leach 1815, sensu stricto oder sensu lato. Ein Beitrag zum Gattungskonzept auf der Grundlage von Artengruppen mit Bestimmungsschlüsseln. Lauterbornia 47: 59–129.Google Scholar
  24. Lawrence, J. E., K. E. Lunde, R. D. Mazor, L. A. Beˆche, E. P. McElravy & V. H. Resh, 2010. Long-term macroinvertebrate response to climate change: implications for biological assessment in mediterranean-climate streams. Journal of the North American Benthological Society 29: 1424–1440.CrossRefGoogle Scholar
  25. Milošević, Dj, V. Simić, I. Todosijević & M. Stojković, 2011. Checklist of the family Chironomidae (Diptera) of Southern Morava River basin, Serbia. Biologica Nyssana 2: 123–128.Google Scholar
  26. Mitchell, R., 1974. The evolution of thermophily in hot springs. Quarterly Review of Biology 49: 229–242.Google Scholar
  27. Moog, O., 2002. Fauna Aquatica Austriaca, edition 2002. A comprehensive species inventory of Austrian aquatic organisms with ecological notes. Federal Ministry of Agriculture, Forestry, Environment and Water Management Division II (water), Vienna.Google Scholar
  28. O’Gorman, E. J., D. E. Pichler, G. Adams, J. P. Benstead, H. Cohen, N. Craig, W. F. Cross, B. O. L. Demars, N. Friberg, G. M. Gíslason, R. Gudmundsdóttir, A. Hawczak, J. M. Hood, L. N. Hudson, L. Johansson, M. P. Johansson, J. R. Junker, A. Laurila, J. R. Manson, E. Mavromati, D. Nelson, J. S. Ólafsson, D. M. Perkins, O. L. Petchey, M. Plebani, D. C. Reuman, B. C. Rall, R. Stewart, M. S. A. Thompson & G. Woodward, 2012. Impacts of warming on the structure and functioning of aquatic communities: Individual to ecosystem-level responses. Advances in Ecological Research 47: 81–176.CrossRefGoogle Scholar
  29. Ormerod, S. J. & I. Durance, 2012. Understanding and managing climate change effects on river ecosystems. In Boon, P. J. & P. J. Raven (eds), River Conservation and Management. Wiley, Chichester: 107–120.CrossRefGoogle Scholar
  30. Pfaff, J. D., 1993. Determination of inorganic anions by ion chromatography. EPA method 300.0, Environmental Monitoring Systems Laboratory Office of research and development, U.S. Environmental Protection Agency, Cincinnati, OH, USA.Google Scholar
  31. Pillot, H. K. M. M., 1984a. De larven der Nederlandse Chironomiae (Diptera). 1A: Inleiding, Tanypodinae en Chironomini. St. E.I.S Nederland, Leiden.Google Scholar
  32. Pillot, H. K. M. M., 1984b. De larven der Nederlandse Chironomiae (Diptera). 1B: Orthocladiinae sensu lato. St. E.I.S Nederland, Leiden.Google Scholar
  33. Pillot, H. K. M. M., 2009. Chironomidae Larvae. Biology and Ecology of the Chironomini. KNNV Publishing, Zeist.Google Scholar
  34. Pritchard, G., 1991. Insects in thermal springs. Memoirs of the Entomological Society of Canada 155: 89–106.CrossRefGoogle Scholar
  35. Räisänen, J., U. Hansson, A. Ullerstig, R. Döscher, L. P. Graham, C. Jones, H. E. M. Meier, P. Samuelsson & U. Willén, 2004. European climate in the late 21st century: regional simulations with two driving global models and two forcing scenarios. Climate Dynamics 22: 13–31.CrossRefGoogle Scholar
  36. Rozkošny, R., 1980. Key for Determination of Larvae of Water Insects. Ceskoslovenska Akademie Ved, Praha.Google Scholar
  37. Simpson, E. H., 1949. Measurement of diversity. Nature 163: 688.CrossRefGoogle Scholar
  38. Sørensen, T. A., 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Det Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter 5: 1–34.Google Scholar
  39. Thioulouse, J., S. Dolédec, D. Chessel & J. M. Olivier, 1997. ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 7: 75–83.CrossRefGoogle Scholar
  40. Timm, T., 2009. A guide to the freshwater Oligochaeta and Polychaeta of northern and central Europe. Lauterbornia 66: 1–235.Google Scholar
  41. Vallenduuk, H. J. & H. K. M. M. Pillot, 2007. Chironomidae Larvae of The Netherlands and Adjacent Lowlands: General Ecology and Tanypodinae. KNNV Publishing, Zeist.Google Scholar
  42. Walther, G. R., 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B 365: 2019–2024.CrossRefGoogle Scholar
  43. Waringer, J. & W. Graf, 1997. Atlas der österreichischen Köcherfliegenlarven. Facultas Universitätsverlag, Wien.Google Scholar
  44. Woodward, G., D. M. Perkins & L. E. Brown, 2010a. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B 365: 2093–2106.CrossRefGoogle Scholar
  45. Woodward, G., J. B. Dybkjaer, J. S. Olafsson, G. M. Gíslason, E. R. Hannesdóttir & N. Friberg, 2010b. Sentinel systems on the razor’s edge: effects of warming on Arctic geothermal stream ecosystems. Global Change Biology 16: 1979–1991.CrossRefGoogle Scholar
  46. Živić, I., Z. Marković & M. Brajković, 2006. Influence of the temperature regime on the composition of the macrozoobenthos community in a thermal brook in Serbia. Biologia 61: 179–191.CrossRefGoogle Scholar
  47. Živić, I., M. Živić, Dj Milošević, K. Bjelanović, S. Stanojlović, R. Daljević & Z. Marković, 2013. The effects of geothermal water inflow on longitudinal changes in benthic macroinvertebrate community composition of a temperate stream. Journal of Thermal Biology 38: 255–263.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ivana Živić
    • 1
  • Miroslav Živić
    • 1
  • Katarina Bjelanović
    • 1
  • Djuradj Milošević
    • 2
  • Sanja Stanojlović
    • 3
  • Radoslav Daljević
    • 3
  • Zoran Marković
    • 4
  1. 1.University of Belgrade, Faculty of BiologyBelgradeSerbia
  2. 2.Department of Biology and Ecology, Faculty of Sciences and MathematicsUniversity of NisNisSerbia
  3. 3.Institute of General and Physical ChemistryBelgradeSerbia
  4. 4.University of Belgrade, Faculty of AgricultureBelgradeSerbia

Personalised recommendations