Hydrobiologia

, Volume 732, Issue 1, pp 71–83 | Cite as

Inundation timing, more than duration, affects the community structure of California vernal pool mesocosms

Primary Research Paper

Abstract

The hydroregime (duration, timing, and frequency of inundation) of temporary aquatic ecosystems are well known to affect relative abundance, species richness, and community composition. The effects of hydroperiod (inundation duration) have been well studied, but this is not the case with inundation timing. I conducted an experiment in mesocosms that were inoculated with California vernal pool soil. Seven replicates of three inundation duration and timing treatments were implemented: long hydroperiod (16 weeks), short-early (first 8 weeks), and short-late (last 8 weeks). Sampling consisted of abiotic variables (dissolved oxygen, conductivity, turbidity, nitrates, and orthophosphates) and biotic variables (invertebrate species densities, including active and passive dispersal strategies, and species richness). Inundation length had little effect on abiotic and biotic variables. Species richness and total density significantly increased in late inundation timing treatments. Active dispersers densities increased in late inundation treatments, especially in short-inundation treatments. Species composition changed in response to both inundation timing and succession. These results suggest that inundation timing needs to be considered in temporary aquatic ecosystems. Indeed, understanding how this variation affects communities may provide a framework for predicting ecosystem responses to climate change.

Keywords

Hydroregime Invertebrates Phenology Species composition Temporary ponds 

References

  1. Allen, A. P., J. H. Brown & J. F. Gillooly, 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297: 1545–1548.Google Scholar
  2. Alto, B. W. & S. A. Juliano, 2001. Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. Journal of Medical Entomology 38: 646–656.Google Scholar
  3. Bailly, D., F. A. Cassemiro, C. S. Agostinho, E. E. Marques & A. A. Agostinho, 2013. The metabolic theory of ecology convincingly explains the latitudinal diversity gradient of Neotropical freshwater fish. Ecology 95: 553–562.Google Scholar
  4. Batzer, D. P., 2013. The seemingly intractable ecological responses of invertebrates in North American wetlands: a review. Wetlands 33: 1–15.Google Scholar
  5. Blaustein, L. & J. M. Chase, 2007. Interactions between mosquito larvae and species that share the same trophic level. Annual Review of Entomology 52: 489–507.Google Scholar
  6. Blaustein, L. & S. S. Schwartz, 2001. Why study ecology in temporary pools? Israel Journal of Zoology 47: 303–312.CrossRefGoogle Scholar
  7. Blaustein, L., M. Kiflawi, A. Eitam, M. Mangel & J. E. Cohen, 2004. Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue. Oecologia 138: 300–305.PubMedCrossRefGoogle Scholar
  8. Bliss, S. A. & P. H. Zedler, 1998. The germination process in vernal pools: sensitivity to environmental conditions and effects on community structure. Oecologia 113: 67–73.Google Scholar
  9. Bogan, M. T., K. S. Boersma & D. A. Lytle, 2013. Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an arid-land stream network. Freshwater Biology 58: 1016–1028.CrossRefGoogle Scholar
  10. Boix, D., J. Sala, S. Gascon & S. Brucet, 2006. Predation in a temporary pond with special attention to the trophic role of Triops cancriformis (Crustacea: Branchiopoda: Notostraca). Hydrobiologia 571: 341–353.CrossRefGoogle Scholar
  11. Brendonck, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.CrossRefGoogle Scholar
  12. Brooks, R. T., 2000. Annual and seasonal variation and the effects of hydroperiod on benthic macroinvertebrates of seasonal forest (“vernal”) ponds in central Massachusetts, USA. Wetlands 20: 707–715.CrossRefGoogle Scholar
  13. Burgmer, T., H. Hillebrand & M. Pfenninger, 2007. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151(1): 93–103.PubMedCrossRefGoogle Scholar
  14. Cáceres, C. E., 1997. Dormancy in invertebrates. Invertebrate Biology 116: 371–383.CrossRefGoogle Scholar
  15. Cáceres, C. E. & M. S. Schwalbach, 2001. How well do laboratory experiments explain field patterns of zooplankton emergence? Freshwater Biology 46: 1179–1189.CrossRefGoogle Scholar
  16. Chase, J. M. & T. M. Knight, 2003. Drought-induced mosquito outbreaks in wetlands. Ecology Letters 6: 1017–1024.CrossRefGoogle Scholar
  17. Chesson, P., 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31: 343–366.CrossRefGoogle Scholar
  18. Collinge, S. K., C. Ray & F. Gerhardt, 2011. Long-term dynamics of biotic and abiotic resistance to exotic species invasion in restored vernal pool plant communities. Ecological Applications 21: 2105–2118.PubMedCrossRefGoogle Scholar
  19. Croel, R. C. & J. M. Kneitel, 2011. Ecosystem-level effects of bioturbation by the tadpole shrimp Lepidurus packardi in temporary pond mesocosms. Hydrobiologia 665: 169–181.CrossRefGoogle Scholar
  20. Danks, H. V., 2002. The range of insect dormancy responses. European Journal of Entomology 99(2): 127–142.CrossRefGoogle Scholar
  21. De Meester, L., S. Declerck, R. Stoks, G. Louette, F. Van De Meutter, T. De Bie, E. Michels & L. Brendonck, 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 715–725.CrossRefGoogle Scholar
  22. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.PubMedCrossRefGoogle Scholar
  23. Eng, L. L., D. Belk & C. H. Eriksen, 1990. Californian Anostraca: distribution, habitat, and status. Journal of Crustacean Biology 10: 247–277.CrossRefGoogle Scholar
  24. Euliss, N. H., J. W. LaBaugh, L. H. Fredrickson, D. M. Mushet, M. K. Lauban, G. A. Swanson, T. C. Winter, D. O. Rosenberry & R. D. Nelson, 2004. The wetland continuum: a conceptual framework for interpreting biological studies. Wetlands 24: 448–458.CrossRefGoogle Scholar
  25. Federal Register, 2003. Endangered and threatened wildlife and plants: final designation of critical habitat for four vernal pool crustaceans and eleven vernal pool plants in California and Southern Oregon: final rule. Federal Register 68: 46684–46762.Google Scholar
  26. Florencio, M., L. Serrano, C. Gómez-Rodríguez, A. Millán & C. Díaz-Paniagua, 2009. Inter-and intra-annual variations of macroinvertebrate assemblages are related to the hydroperiod in Mediterranean temporary ponds. Hydrobiologia 634: 167–183.CrossRefGoogle Scholar
  27. Foti, R., M. del Jesus, A. Rinaldo & I. Rodriguez-Iturbe, 2012. Hydroperiod regime controls the organization of plant species in wetlands. Proceedings of the National Academy of Sciences 109: 19596–19600.CrossRefGoogle Scholar
  28. Hammer, Ø., Harper, D. A. T & Ryan, P. D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4: 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
  29. Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.PubMedCrossRefGoogle Scholar
  30. Hobbs, R. J. & H. A. Mooney, 1995. Spatial and temporal variability in California annual grassland: results from a long-term study. Journal of Vegetation Science 6: 43–56.CrossRefGoogle Scholar
  31. Holland, R. F., 2009. Glimmerings from the hogwallows. In: Fraga i Arguimbau, P., Editor, International Conference on Mediterranean Temporary Ponds: Proceedings and Abstracts. Consell Insular de Menorca. Recerca, 14. Maó, Menorca: 37–61.Google Scholar
  32. Holland, R. F. & S. K. Jain, 1981. Insular biogeography of vernal pools in the Central Valley of California. American Naturalist 117: 24–37.CrossRefGoogle Scholar
  33. King, J. L., M. A. Simovich & R. C. Brusca, 1996. Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328: 85–116.CrossRefGoogle Scholar
  34. Kneitel, J. M. & C. L. Lessin, 2010. Ecosystem-phase interactions: aquatic eutrophication decreases terrestrial plant diversity in California vernal pools. Oecologia 163: 461–469.PubMedCrossRefGoogle Scholar
  35. Louette, G. & L. De Meester, 2007. Predation and priority effects in experimental zooplankton communities. Oikos 116(3): 419–426.CrossRefGoogle Scholar
  36. McKee, D., D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes, D. Wilson & B. Moss, 2003. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnology and Oceanography 48: 707–722.CrossRefGoogle Scholar
  37. O’Gorman, E. J., D. E. Pichler, G. Adams, J. P. Benstead, H. Cohen, N. Craig, W. F. Cross, B. O. L. Demars, N. Friberg, G. M. Gíslason, R. Gudmundsdóttir, A. Hawczak, J. M. Hood, L. N. Hudson, L. Johansson, M. P. Johansson, J. R. Junker, A. Laurila, J. R. Manson, E. Mavromati, D. Nelson, J. S. Ólafsson, D. M. Perkins, O. L. Petchey, M. Plebani, D. C. Reuman, B. C. Rall, R. Stewart, M. S. A. Thompson & G. Woodward, 2012. Impacts of warming on the structure and functioning of aquatic communities: individual- to ecosystem-level responses. Advances in Ecological Research 47: 81–176.CrossRefGoogle Scholar
  38. Ovaskainen, O., S. Skorokhodova, M. Yakovleva, A. Sukhov, A. Kutenkov, N. Kutenkova, A. Shcherbakovb, E. Meyke & M. del Mar Delgado, 2013. Community-level phenological response to climate change. Proceedings of the National Academy of Sciences 110: 13434–13439.CrossRefGoogle Scholar
  39. Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637–669.CrossRefGoogle Scholar
  40. Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.PubMedCrossRefGoogle Scholar
  41. Paton, P. W. & W. B. Crouch, 2002. Using the phenology of pond-breeding amphibians to develop conservation strategies. Conservation Biology 16: 194–204.CrossRefGoogle Scholar
  42. Piggott, J. J., K. Lange, C. R. Townsend & C. D. Matthaei, 2012. Multiple stressors in agricultural streams: a mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment. PloS ONE 7: e49873.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Pitt, M. D. & H. F. Heady, 1978. Responses of annual vegetation to temperature and rainfall patterns in northern California. Ecology 59: 336–350.CrossRefGoogle Scholar
  44. Pyke, C. R., 2005. Assessing climate change impacts on vernal pool ecosystems and endemic branchiopods. Ecosystems 8: 95–105.CrossRefGoogle Scholar
  45. Ripley, B. J. & M. A. Simovich, 2009. Species richness on islands in time: variation in ephemeral pond crustacean communities in relation to habitat duration and size. Hydrobiologia 617: 181–196.CrossRefGoogle Scholar
  46. Schneider, D. W. & T. M. Frost, 1996. Habitat duration and community structure in temporary ponds. Journal of the North American Benthological Society 15: 64–86.CrossRefGoogle Scholar
  47. Sim, L. L., J. A. Davis, K. Strehlow, M. McGuire, K. M. Trayler, S. Wild, P. J. Pappas & J. O’Connor, 2013. The influence of changing hydroregime on the invertebrate communities of temporary seasonal wetlands. Freshwater Science 32: 327–342.CrossRefGoogle Scholar
  48. Skelly, D. K., 2002. Experimental venue and estimation of interaction strength. Ecology 83: 2097–2101.CrossRefGoogle Scholar
  49. Spencer, M., L. Blaustein & J. E. Cohen, 2002. Oviposition habitat selection by mosquitoes (Culiseta longiareolata) and consequences for population size. Ecology 83: 669–679.CrossRefGoogle Scholar
  50. Stewart, R. I. A., M. Dossena, D. A. Bohan, E. Jeppesen, R. L. Kordas, M. E. Ledger, M. Meerhoff, B. Moss, C. Mulder, J. B. Shurin, B. Suttle, R. Thompson, M. Trimmer & G. Woodward, 2013. Mesocosm experiments as a tool for ecological climate change research. Advances in Ecological Research 48: 71–181.CrossRefGoogle Scholar
  51. Tavernini, S., 2008. Seasonal and inter-annual zooplankton dynamics in temporary pools with different hydroperiods. Limnologica Ecology and Management of Inland Waters 38: 63–75.CrossRefGoogle Scholar
  52. Thackeray, S. J., T. H. Sparks, M. Frederiksen, S. Burthe, P. J. Bacon, J. R. Bell, M. S. Botham, T. M. Brereton, P. W. Bright, L. Carvalho, T. Clutton-Brock, A. Dawson, M. Edwards, J. M. Elliott, R. Harrington, D. Johns, I. D. Jones, J. T. Jones, D. I. Leech, D. B. Roy, W. A. Scott, M. Smith, R. J. Smithers, I. J. Winfield & S. Wanless, 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology 16: 3304–3313.CrossRefGoogle Scholar
  53. Thorp, J. H. & A. P. Covich, 2009. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, New York.Google Scholar
  54. Vandekerkhove, J., S. Declerck, L. Brendonck, J. Maria Conde-Porcina, E. Jeppesen & L. D. Meester, 2005. Hatching of cladoceran resting eggs: temperature and photoperiod. Freshwater Biology 50: 96–104.CrossRefGoogle Scholar
  55. Vanschoenwinkel, B., A. Hulsmans, E. De Roeck, C. De Vries, M. Seaman & L. Brendonck, 2009. Community structure in temporary freshwater pools: disentangling the effects of habitat size and hydroregime. Freshwater Biology 54: 1487–1500.CrossRefGoogle Scholar
  56. Vanschoenwinkel, B., A. Waterkeyn, M. Jocqué, L. Boven, M. Seaman & L. Brendonck, 2010. Species sorting in space and time-the impact of disturbance regime on community assembly in a temporary pool metacommunity. Journal of the North American Benthological Society 29: 1267–1278.CrossRefGoogle Scholar
  57. Walther, G. R., 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2019–2024.CrossRefGoogle Scholar
  58. Warner, R. R. & P. L. Chesson, 1985. Coexistence mediated by recruitment fluctuations: a field guide to the storage effect. American Naturalist 125: 769–787.CrossRefGoogle Scholar
  59. Warwick, N. W. & M. A. Brock, 2003. Plant reproduction in temporary wetlands: the effects of seasonal timing, depth, and duration of flooding. Aquatic Botany 77: 153–167.CrossRefGoogle Scholar
  60. Waterkeyn, A., P. Grillas, B. Vanschoenwinkel & L. Brendonck, 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology 53: 1808–1822.CrossRefGoogle Scholar
  61. Waterkeyn, A., J. Vanoverbeke, N. Van Pottelbergh & L. Brendonck, 2011a. While they were sleeping: dormant egg predation by Triops. Journal of plankton research 33(10): 1617–1621.CrossRefGoogle Scholar
  62. Waterkeyn, A., P. Grillas, M. Anton-Pardo, B. Vanschoenwinkel & L. Brendonck, 2011b. Can large branchiopods shape microcrustacean communities in Mediterranean temporary wetlands? Marine and Freshwater Research 62: 46–53.CrossRefGoogle Scholar
  63. Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363.CrossRefGoogle Scholar
  64. Werner, E. E., D. K. Skelly, R. A. Relyea & K. L. Yurewicz, 2007. Amphibian species richness across environmental gradients. Oikos 116: 1697–1712.CrossRefGoogle Scholar
  65. Wiggins, G. B., R. J. Mackay & I. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Archiv fur Hydrobiologie, Supplement 58: 97–206.Google Scholar
  66. Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, Oxford.Google Scholar
  67. Winder, M., S. A. Berger, A. Lewandowska, N. Aberle, K. Lengfellner, U. Sommer & S. Diehl, 2012. Spring phenological responses of marine and freshwater plankton to changing temperature and light conditions. Marine Biology 159: 2491–2501.CrossRefGoogle Scholar
  68. Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2093–2106.CrossRefGoogle Scholar
  69. Yee, D. A., S. Taylor & S. M. Vamosi, 2009. Beetle and plant density as cues initiating dispersal in two species of adult predaceous diving beetles. Oecologia 160: 25–36.PubMedCrossRefGoogle Scholar
  70. Zacharias, I. & M. Zamparas, 2010. Mediterranean temporary ponds. A disappearing ecosystem. Biodiversity and Conservation 19: 3827–3834.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Biological SciencesCalifornia State University, SacramentoSacramentoUSA

Personalised recommendations