, Volume 733, Issue 1, pp 19–29 | Cite as

Projected coral bleaching in response to future sea surface temperature rises and the uncertainties among climate models

  • Yumiko Yara
  • Masahiko FujiiEmail author
  • Hiroya Yamano
  • Yasuhiro Yamanaka


We quantitatively evaluated the effects of rising sea surface temperature (SST) on coral bleaching and the uncertainties resulting from differences in global warming projections. To do so, we used monthly SSTs in the twenty-first century obtained from 23 climate models under the A1B scenario (from the Special Report on Emissions Scenarios) and SST-based indices for coral bleaching. All of the projections indicated that severe bleaching or death of corals will be common and severe in wide areas of the tropical and subtropical oceans by the middle of this century. However, decadal oscillation could modify the exact timing by around ±10 years. Such projections are important for conserving marine biodiversity and designing future strategies to avoid tropical and subtropical coral extinction. To obtain more reliable projections and reduce uncertainties, climate models should be improved by using higher spatiotemporal resolutions, and more realistic biological indices should be embedded into existing models.


Biodiversity Coral bleaching Future projection Global warming Rise in water temperature Uncertainty 



The authors appreciate the helpful comments of two anonymous reviewers. We thank the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making the WCRP phase 3 of the Coupled Model Intercomparison Project (CMIP3) multi-model dataset available. Support for this dataset was provided by the Office of Science of the US Department of Energy. This study was supported by the Global Environment Research Fund (S-5 and S-9) of the Ministry of the Environment, Program for Risk Information on Climate Change of Ministry of Education, Culture, Sports, Science and Technology, Japan, and Hokkaido University’s Sustainable Low Carbon Society Project.


  1. Anthony, K. R. N., D. I. Kline, G. Diaz-Pulido, S. Dove & O. Hoegh-Guldberg, 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America 105: 17442–17446.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Anthony, K. R. N., J. A. Maynard, G. Diaz-Pulido, P. J. Mumby, P. A. Marshall, L. Cao & O. Hoegh-Guldberg, 2011. Ocean acidification and warming will lower coral reef resilience. Global Change Biology 17: 1798–1808.PubMedCentralCrossRefGoogle Scholar
  3. Bleck, R., 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling 37: 55–88.CrossRefGoogle Scholar
  4. Brown, B. E., 1997. Coral bleaching: causes and consequences. Coral Reefs 16: S129–S138.CrossRefGoogle Scholar
  5. Brown, B. E. & A. R. Cossins, 2011. The potential for temperature acclimatisation of reef corals in the face of climate change. In Dubinsky, Z. & N. Stambler (eds), Coral reefs: an ecosystem in transition. Springer, Berlin: 421–433.CrossRefGoogle Scholar
  6. Brown, B. E., R. P. Dunne, M. S. Goodson & A. E. Douglas, 2002. Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21: 119–126.Google Scholar
  7. Brown, J. N., A. S. Gupta, J. R. Brown, L. C. Muir, J. S. Risbey, P. Whetton, X. Zhang, A. Ganachaud, B. Murphy & S. E. Wijffels, 2012. Implications of CMIP model biases and uncertainties for climate projections in the western tropical Pacific. Climatic Change 119: 147–161.CrossRefGoogle Scholar
  8. Castillo, K. D. & B. S. T. Helmuth, 2005. Influence of thermal history on the response of Montastrea annularis to short-term temperature exposure. Marine Biology 148: 261–270.CrossRefGoogle Scholar
  9. Csaszar, N. B. M., P. J. Ralph, R. Frankham, R. Berkelmans & M. J. H. van Oppen, 2010. Estimating the potential for adaptation of corals to climate warming. PLoS ONE 5: e9751.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Diansky, N. A., A. V. Bagno & V. B. Zalesny, 2002. Sigma model of global ocean circulation and its sensitivity to variations in wind stress. Izvestiya, Atmospheric and Oceanic Physics (English Translation) 38(5): 477–494.Google Scholar
  11. Diansky, N. A. & E. M. Volodin, 2002. Simulation of present-day climate with a coupled atmosphere–ocean general circulation model. Izvestiya, Atmospheric and Oceanic Physics (English Translation) 38(6): 732–747.Google Scholar
  12. Done, T. J., P. Whetton, R. Johns, R. Berkelmans, J. Lough, W. Skirving & S. Wooldridge, 2003. Global climate change and coral bleaching on the Great Barrier Reef. Department of Natural Resources and Mines, Brisbane.Google Scholar
  13. Donner, S. D., 2009. Coping with commitment: projected thermal stress on coral reefs under different future scenarios. PLoS ONE 4(6): e5712.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Donner, S. D., W. J. Skirving, C. M. Little, M. Oppenheimer & O. Hoegh-Guldberg, 2005. Global assessment of coral bleaching and required rates of adaptation under climate change. Global Change Biology 11: 2251–2265.CrossRefGoogle Scholar
  15. Flato, G. M. & G. J. Boer, 2001. Warming asymmetry in climate change simulations. Geophysical Research Letter 28: 195–198.CrossRefGoogle Scholar
  16. Frieler, K., M. Meinshausen, A. Golly, M. Mengel, K. Lebek, S. D. Donner & O. Hoegh-Guldberg, 2012. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nature Climate Change 3: 165–170.CrossRefGoogle Scholar
  17. Ganachaud, A., A. Sen Gupta, J. N. Brown, K. Evans, C. Maes, L. C. Muir & F. S. Graham, 2013. Projected changes in the tropical Pacific Ocean of importance to tuna fisheries. Climatic Change 119: 163–179.CrossRefGoogle Scholar
  18. Glynn, P. W., 1984. Widespread coral mortality and the 1982/83 El Ninjo warming event. Environmental Conservation 11: 133–146.CrossRefGoogle Scholar
  19. Glynn, P. W., 1988. Coral bleaching and mortality in the tropical eastern Pacific during the 1982–1983 El Nino warming event. In: Ogden J., & R. Wicklund (eds), Mass bleaching of coral reefs in the Caribbean: a research strategy. NOAA’s Undersea Research Program. St Croix, US Virgin Islands, Research Reports 88(2): 42–45.Google Scholar
  20. Glynn, P. W., 1991. Coral reef bleaching in the 1980s and possible connections with global warning. Trends in Ecology & Evolution 6: 175–179.CrossRefGoogle Scholar
  21. Glynn, P. W., 1993. Coral reef bleaching: ecological perspectives. Coral Reefs 12: 1–17.CrossRefGoogle Scholar
  22. Glynn, P. W. & L. D’Croz, 1990. Experimental for high temperature stress as the cause of El Nino warming event. Science 253: 69–71.CrossRefGoogle Scholar
  23. Gnanadesikan, A., K. W. Dixon, S. M. Griffies, V. Balaji, M. Barreiro, J. A. Beesley, W. F. Cooke, T. L. Delworth, R. Gerdes, M. J. Harrison, I. M. Held, W. J. Hurlin, H.-C. Lee, Z. Liang, G. Nong, R. C. Pacanowski, A. Rosati, J. Russell, B. L. Samuels, Q. Song, M. J. Spelman, R. J. Stouffer, C. O. Sweeney, G. Vecchi, M. Winton, A. T. Wittenberg, F. Zeng, R. Zhang & J. P. Dunne, 2006. GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. Journal of Climate 19: 675–697.CrossRefGoogle Scholar
  24. Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell & R. A. Wood, 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16: 147–168.CrossRefGoogle Scholar
  25. Gordon, H. B., L. D. Rotstayn, J. L. McGregor, M. R. Dix, E. A. Kowalczyk, S. P. O’Farrell, L. J. Waterman, A. C. Hirst, S. G. Wilson, M. A. Collier, I. G. Watterson & T. I. Elliott, 2002. The CSIRO Mk3 Climate System Model. CSIRO Atmospheric Research Technical Paper 60: p. 134.Google Scholar
  26. Goreau, T. J. & R. L. Hayes, 1994. Coral bleaching and ocean hot-spots. Ambio 23: 176–180.Google Scholar
  27. Gruber, N., C. Hauri, Z. Lachkar, D. Loher, T. L. Frölicher & G.-K. Plattner, 2012. Rapid progression of ocean acidification in the California Current System. Science 337: 220–223.PubMedCrossRefGoogle Scholar
  28. Guest, J. R., A. H. Baird, J. A. Maynard, E. Muttaqin, A. J. Edwards, S. J. Campbell, K. Yewdall, Y. A. Affendi & L. M. Chou, 2012. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7(3): e33353.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh & T. Stockdale, 2009. Understanding El Niño in ocean–atmosphere general circulation model: progress and challenges. Bulletin of the American Meteorological Society 90: 325–340.CrossRefGoogle Scholar
  30. Guinotte, J. M., R. W. Buddemeier & J. A. Kleypas, 2003. Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22: 551–558.CrossRefGoogle Scholar
  31. Haak, H., J. Jungclaus, U. Mikolajewicz & M. Latif, 2003. Formation and propagation of great salinity anomalies. Geophysical Research Letters 30(9): 1473. doi: 10.1029/2003GL17065.CrossRefGoogle Scholar
  32. Hoegh-Guldberg, O., 1999. Climate change, coral bleaching and the future of the world’s coral reefs. Marine Freshwater Research 50: 839–866.CrossRefGoogle Scholar
  33. Hoegh-Guldberg, O., 2005. Low coral cover in a high-CO2 world. Journal of Geophysical Research 110: C09S06. doi: 10.1029/2004JC002528.CrossRefGoogle Scholar
  34. Hoegh-Guldberg, O., 2011. Coral reef ecosystems and anthoropogenic climate change. Regeonal Environmental Change 11(Supplement 1): S215–S227. doi: 10.1007/s10113-010-0189-2.CrossRefGoogle Scholar
  35. Hoegh-Guldberg, O. & G. J. Smith, 1989. Light, salinity, and temperature and the population density, metabolism and export of zooxanthellae from Stylophora pistillata and Seriatopora hystrix. Journal of Experimental Marine Biology and Ecology 129: 279–303.CrossRefGoogle Scholar
  36. Hoegh-Guldberg, O., P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto, N. Muthiga, R. H. Bradbury, A. Dubi & M. E. Hatziolos, 2007. Coral reefs under rapid climate change and ocean acidification. Science 318: 1737–1742.PubMedCrossRefGoogle Scholar
  37. Howells, E. J., V. H. Beltran, N. W. Larsen, L. K. Bay, B. L. Willis & M. J. H. van Oppen, 2012. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nature Climate Change 2: 116–120. doi: 10.1038/NCLIMATE1330.CrossRefGoogle Scholar
  38. IPCC, 2007a. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Cambridge University Press, Cambridge, UK and New York, NY, USA, 996 pp.Google Scholar
  39. IPCC, 2007b. Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry, M. L., O. F. Canziani, J. P. Palutikof, P. J. van der Linden & C. E. Hanson (eds), Cambridge University Press, Cambridge, UK and New York, NY, USA, 976 pp.Google Scholar
  40. Johns, T. C., R. E. Carnell, J. F. Crossley, J. M. Gregory, J. F. B. Mitchell, C. A. Senior, S. F. B. Tett & R. A. Wood, 1997. The second Hadley Centre coupled ocean–atmosphere GCM: model description, spinup and validation. Climate Dynamics 13: 103–134.CrossRefGoogle Scholar
  41. Johns, T. C., C. F. Durman, H. T. Banks, M. J. Roberts, A. J. McLaren, J. K. Ridley, C. A. Senior, K. D. Williams, A. Jones, G. J. Rickard, S. Cusack, W. J. Ingram, M. Crucifix, D. M. H. Sexton, M. M. Joshi, B.-W. Dong, H. Spencer, R. S. R. Hill, J. M. Gregory, A. B. Keen, A. K. Pardaens, J. A. Lowe, A. Bodas-Salcedo, S. Stark & Y. Searl, 2006. The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations. Journal of Climate 19(7): 1327–1353.CrossRefGoogle Scholar
  42. K-1 model developers, 2004. In Hasumi, H. & S. Emori (eds), K-1 coupled model (MIROC) description, K-1 technical report. Center for Climate System Research, University of Tokyo, Bunkyo: 34.Google Scholar
  43. Kim, S.-J., G. M. Flato & G. J. Boer, 2003. A coupled climate model simulation of the Last Glacial Maximum, part 2: approach to equilibrium. Climate Dynamics 20: 635–661.Google Scholar
  44. Kim, S.-J., G. M. Flato, G. J. Boer & N. A. McFarlane, 2002. A coupled climate model simulation of the Last Glacial Maximum, part 1: transient multi-decadal response. Climate Dynamics 19: 515–537.CrossRefGoogle Scholar
  45. Langdon, C. & M. J. Atkinson, 2005. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. Journal of Geophysical Research 110: C09S07. doi: 10.1029/2004JC002576.CrossRefGoogle Scholar
  46. Legutke, S. & E. Maier-Reimer, 1999. Climatology of the HOPE-G Global Ocean General Circulation Model. Technical report, No. 21, German Climate Computing Centre (DKRZ), Hamburg: p. 90.Google Scholar
  47. Liu, G., A. E. Strong & W. Skirving, 2003. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. EOS, Transactions, American Geophysical Union 84: 137.CrossRefGoogle Scholar
  48. Madec G., P. Delecluse, M. Imbard & C. Lévy, 1998. OPA version 8.1 ocean general circulation model reference manual. Notes du Pôle de Modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 11: p. 91.Google Scholar
  49. Manzello, D. P., 2010. Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29: 749–758. doi: 10.1007/s00338-010-0623-4.CrossRefGoogle Scholar
  50. Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif & F. Röske, 2003. The Max Planck Institute global ocean/sea-ice model with orthogonal curvilinear coordinates. Ocean Modelling 5: 91–127.CrossRefGoogle Scholar
  51. Maynard, J. A., K. R. N. Anthony, P. A. Marshall & I. Masiri, 2008. Major bleaching events can lead to increased thermal tolerance in corals. Marine Biology 155: 173–182.CrossRefGoogle Scholar
  52. Meehl, G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, A. Kitoh, R. Knutti, J. M. Murphy, A. Noda, S. C. B. Raper, I. G. Watterson, A. J. Weaver & Z.-C. Zhao, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, chap. Global Climate Projections, Cambridge University Press, Cambridge, UK and New York, NY, USA, 747–846.Google Scholar
  53. Meissner, K. J., T. Lippmann & A. Sen Gupta, 2012. Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years. Coral Reefs. doi: 10.1007/s00338-011-0866-8.Google Scholar
  54. Nakano, Y., 2004. Global environmental change and coral bleaching. In The Japanese Coral Reef Society and Ministry of the Environment (ed.), Coral Reefs of Japan. Ministry of Environment, Tokyo: 42–48.Google Scholar
  55. Nojima, S. & M. Okamoto, 2008. Enlargement of habitats of scleractinian corals to north and coral bleaching events. Nippon Suisan Gakkaishi 74(5): 884–888.CrossRefGoogle Scholar
  56. Oliver, T. A. & S. R. Palumbi, 2011. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30: 429–440.CrossRefGoogle Scholar
  57. Pandolfi, J. M., S. R. Connolly, D. J. Marshall & A. L. Cohen, 2011. Projecting coral reef futures under global warming and ocean acidification. Science 333: 418–422.PubMedCrossRefGoogle Scholar
  58. Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey & M. G. Schlax, 2007. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate 20: 5473–5496.CrossRefGoogle Scholar
  59. Russell, G. L., J. R. Miller & D. Rind, 1995. A coupled atmosphere–ocean model for transient climate change studies. Atmosphere-Ocean 33(4): 683–730.CrossRefGoogle Scholar
  60. Russell, G. L., J. R. Miller, D. Rind, R. A. Ruedy, G. A. Schmidt & S. Sheth, 2000. Comparison of model and observed regional temperature changes during the past 40 years. Journal of Geophysical Research 105: 14891–14898.CrossRefGoogle Scholar
  61. Sakamoto, T. T., Y. Komuro, T. Nishimura, M. Ishii, H. Tatebe, H. Shiogama, A. Hasegawa, T. Toyoda, M. Mori, T. Suzuki, Y. Imada, T. Nozawa, K. Takata, T. Mochizuki, K. Ogochi, S. Emori, H. Hasumi & M. Kimoto, 2012. MIROC4h – a new high-resolution atmosphere–ocean coupled general circulation model. Journal of the Meteorological Society of Japan 90(3): 325–359.CrossRefGoogle Scholar
  62. Salas-Mélia, D., F. Chauvin, M. Déqué, H. Douville, J. F. Gueremy, P. Marquet, S. Planton, J. F. Royer & S. Tyteca, 2005. Description and validation of the CNRM-CM3 global coupled model. CNRM Technical Report 103: 36.Google Scholar
  63. Sheppard, C. R. C., 2003. Predicted recurrences of mass coral mortality in the Indian Ocean. Nature 425: 294–297.PubMedCrossRefGoogle Scholar
  64. Smith, R. D., S. Kortas & B. Meltz, 1995. Curvilinear coordinates for global ocean models, LA-UR-95-1146. Los Alamos National Laboratory, Los Alamos: 38.Google Scholar
  65. Strong, A. E., E. J. Kearns & K. K. Gjovig, 2000. Sea surface temperature signals from satellites: an update. Geophysical Research Letters 27(11): 1667–1670.CrossRefGoogle Scholar
  66. Teneva, L., M. Karnauskas, C. A. Logan, L. Bianucci, J. C. Currie & J. A. Kleypas, 2012. Predicting coral bleaching hotspots: the role of regional variability in thermal stress and potential adaptation rates. Coral Reefs 31: 1–12. doi: 10.1007/s00338-011-0812-9.CrossRefGoogle Scholar
  67. Toscano, M. A., G. Liu, I. C. Guch, K. S. Casey & A. E. Strong, 2000. Improved prediction of coral bleaching using high-resolution HotSpot anomaly mapping. Proceedings of the 9th International Coral Reef Symposium: 1143–1147.Google Scholar
  68. Tsuchiya, M. & Y. Fujita, 2009. Anguish of coral reefs. Tokai University Press, Hiratsuka: 203.Google Scholar
  69. Washington, W. M., J. W. Weatherly, G. A. Meehl, A. J. Semtner Jr, T. W. Bettge, A. P. Craig, W. G. Strand Jr, J. Arblaster, V. B. Wayland, R. James & Y. Zhang, 2000. Parallel climate model PCM) control and transient simulations. Climate Dynamics 16: 755–774.CrossRefGoogle Scholar
  70. Watanabe, M., T. Suzuki, R. O’ishi, Y. Komuro, S. Watanabe, S. Emori, T. Takemura, M. Chikira, T. Ogura, M. Sekiguchi, K. Takata, D. Yamazaki, T. Yokohata, T. Nozawa, H. Hasumi, H. Tatebe & M. Kimoto, 2010. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. Journal of Climate 23: 6312–6335.CrossRefGoogle Scholar
  71. Wilkinson, C. (ed.), 2004. Status of coral reefs of the world: 2004. Australian Institute of Marine Science, Townsville: 301.Google Scholar
  72. Wooldridge, S., T. Done, R. Berkelman, R. Jones & P. Marshall, 2005. Precursors for resilience in coral communities in a warming climate: a belief network approach. Marine Ecology Progress Series 295: 157–169.CrossRefGoogle Scholar
  73. Yara, Y., M. Fujii, Y. Yamanaka, N. Okada, H. Yamano & K. Oshima, 2009. Projected effects of global warming on coral reefs in seas close to Japan. Journal of the Japanese Coral Reef Society 11: 131–140. (in Japanese with English abstract).CrossRefGoogle Scholar
  74. Yara, Y., K. Oshima, M. Fujii, H. Yamano, Y. Yamanaka & N. Okada, 2011. Projection and uncertainty of the poleward range expansion of coral habitats in response to sea surface temperature warming: a multiple climate model study. Galaxea 13: 11–20.CrossRefGoogle Scholar
  75. Yara, Y., M. Vogt, M. Fujii, H. Yamano, C. Hauri, M. Steinacher, N. Gruber & Y. Yamanaka, 2012. Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan. Biogeosciences 9: 4955–4968.CrossRefGoogle Scholar
  76. Yonge, C. M. & A. G. Nichols, 1931. Studies on the physiology of corals. IV. The structure, distribution and physiology of the zooxanthellae. Scientific Reports of the Great Barrier Reef. Expedition 1928–29(1): 135–176.Google Scholar
  77. Yongqiang, Y., Y. Rucong, Z. Xuehong & L. Hailong, 2002. A flexible global coupled climate model. Advances in Atmospheric Sciences 19: 169–190.CrossRefGoogle Scholar
  78. Yongqiang, Y., Z. Xuehong & G. Yufu, 2004. Global coupled ocean–atmosphere general circulation models in LASG/IAP. Advances in Atmospheric Sciences 21: 444–455.CrossRefGoogle Scholar
  79. Yukimoto, S., A. Noda, T. Uchiyama, S. Kusunoki & A. Kitoh, 2001. Climate changes of the twentieth through twenty-first centuries simulated by the MRI-CGCM2.3. Papers in Meteorology and Geophysics 51: 47–88.CrossRefGoogle Scholar
  80. Yukimoto, S., A. Noda, A. Kitoh, M. Hosaka, H. Yoshimura, T. Uchiyama, K. Shibata, O. Arakawa & S. Kusunoki, 2006a. Present-day climate and climate sensitivity in the Meteorological Research Institute coupled GCM version 2.3 (MRI-CGCM2.3). Journal of the Meteorological Society of Japan 84: 333–363.CrossRefGoogle Scholar
  81. Yukimoto, S., A. Noda, T. Uchiyama, S. Kusunoki & A. Kitoh, 2006b. Climate changes of the twentieth through twenty-first centuries simulated by the MRI-CGCM2.3. Papers in Meteorology and Geophysics 56: 9–24.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yumiko Yara
    • 1
    • 2
  • Masahiko Fujii
    • 2
    Email author
  • Hiroya Yamano
    • 1
  • Yasuhiro Yamanaka
    • 2
  1. 1.Center for Environmental Biology and Ecosystem StudiesNational Institute for Environmental StudiesTsukubaJapan
  2. 2.Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan

Personalised recommendations