Advertisement

Hydrobiologia

, Volume 728, Issue 1, pp 179–200 | Cite as

Modern distribution of ostracodes and other limnological indicators in southern Lake Malawi: implications for paleocological studies

  • Margaret Whiting Blome
  • Andrew S. Cohen
  • Matthew J. Lopez
Primary Research Paper

Abstract

This modern distribution study from the southwest arm of Lake Malawi quantitatively relates variables of the lake environment to surficial assemblages of ostracodes and other paleoenvironmental indicators (molluscs, Botryococcus, fish, and charcoal) from 102 sites, across a gradient of littoral to shallow profundal conditions. The goal of this research is to use the resultant relationships to help quantify paleoecological interpretations of the fossil record from sediment cores. Site locations varied by depth (1–60 m) and adjacent shoreline environment. Thirty-three ostracode species are identified from 54 sites including four new, undescribed species of Cypridopsinae (2) and Limnocythere (2). Ostracodes are extremely abundant between 1 and 25 m water depth, but are rare to absent between 30 and 60 m. This disappearance is probably taphonomically controlled, with carbonate dissolution in the death assemblage since abundant live ostracodes have been found in the lake at greater than 30 m depth, where bottom sediments lack calcium carbonate. Constrained correspondence analysis (CCA) of ostracode species abundance suggests depth and dissolved oxygen (DO) content to be the primary environmental variables affecting their distribution. Additional CCA models using all biological indicators suggest limnologic variables correlated with depth (e.g., bottom water temperature and DO) and adjacent shoreline environment were most significant.

Keywords

Ostracodes East Africa Lake Malawi Modern distribution study Paleoecology 

Notes

Acknowledgments

Funding for the field work for this project was provided by the U.S. National Science Foundation-Earth System History Program (EAR-0602350). Funding for sample preparation and sedimentological analyses was provided to author Lopez by the SAGUARO (Southern Arizona Geosciences Union for Academics, Research and Outreach) program at the University of Arizona. SEM imaging was performed on a Hitachi S-3400 N housed in the Geosciences Department at the University of Arizona. Funding for the SEM facility was through the Arizona LaserChron Center Grant NSF EAR-0929777. Lead author Blome would like to thank a number of people for their invaluable assistance during the 2010 field season in Cape MacLear, Malawi including: Linkston Chataka (captain), Bernard Gulo (diver), Reidwel Nyirenda (geologist at Malawi Geological Survey Department), and Jeffery Stone (fellow researcher), as well as Jay Stauffer and Leonard Kalindekafe for logistical assistance and Howard and Michelle Massey-Hicks for their hospitality over the course of the trip.

Supplementary material

10750_2014_1817_MOESM1_ESM.tiff (21.9 mb)
ESM Fig. 1 Cypridopsine n.gen. sp.A (AC), Cypridopsine n.gen. sp.B (DE), Cypridopsine n.gen. sp.D (F), Cypridopsine n.gen. sp.C (GI), Cypridopsine n.gen. sp.F (JK). A Right valve, external view, Site 53. B Carapace, dorsal view, juvenile, Site 78. C Carapace, left lateral view, juvenile, Site 78. D Right valve, external view, Site 142. E Carapace, dorsal view, Site 141. F Left valve, external view, Site 133. G Right valve, external view, female, Site 5. H Carapace, ventral view, Site 5. I Carapace, dorsal view, Site 5. J Right valve, external view, Site 133. K Left valve, external view, juvenile, Site 141 (TIFF 22431 kb)
10750_2014_1817_MOESM2_ESM.tif (21.2 mb)
ESM Fig. 2 Examples of ostracode species found in modern sediments of the SW arm of Lake Malawi. Cypridopsine n.gen. sp.G (AB). Cypridopsine n.gen. sp.K (CE). Cypridopsine n.gen. sp.L (FH). Cypridopsine n.gen. sp.N (IL). A Right valve, external view, Site 83. B Right valve, internal view, Site 83. C Left valve, external view, Site 5. D Right valve, internal view, Site 45. E Carapace, dorsal view, Site 45. F Carapace, dorsal view, Site 142. G. Right valve, external view, Site 142. H Carapace, left lateral view, Site 5. I Left valve, external view, detail of irregularly shaped nodes—scale below applies only to this image. J Left valve, external view, Site 133. K Right valve, internal view, Site 133. L Carapace, dorsal view, Site 137 (TIFF 21670 kb)
10750_2014_1817_MOESM3_ESM.tif (22.9 mb)
ESM Fig. 3 Examples of ostracode species found in modern sediments of the SW arm of Lake Malawi. Cypridopsine n.gen. sp.O (AC). Cypridopsine n.gen. sp.P (DF). Cypridopsine n.gen. sp.X n.sp. (GH). Cypridopsine n.gen. sp.1 (IL). A Right valve, external view, Site 133. B Right valve, internal view, juvenile, Site 133. C Carapace, dorsal view, Site 92. D Left valve, external view, Site 5. E Left view, internal view, juvenile, Site 132. F Carapace, dorsal view, Site 90. G Right valve, external view, Site 142. H Carapace, left lateral view, Site 142. I Right valve, external view, Site 102. J Carapace, dorsal view, Site 102. K Left valve, internal view, Site 105 (TIFF 23494 kb)
10750_2014_1817_MOESM4_ESM.tiff (22.7 mb)
ESM Fig. 4 Examples of ostracode species found in modern sediments of the SW arm of Lake Malawi. Cyprinotinae n.gen. sp.1 (AC), Cyprinotinae n.gen. sp.2 (DG), Cyprinotinae n.gen. sp.3 (HJ). A Right valve, external view, juvenile, Site 35. B Right valve, internal view, Site 23. C Left valve, external view, juvenile, Site 35. D Right valve, external view, Site 35. E Right valve, internal view, Site 83. F Carapace, dorsal view, site 94. G Carapace, ventral view, Site 94. H Carapace, dorsal view, Site 102. I Left valve, external view, Site 36. J Left valve, internal view, Site 23 (TIFF 23260 kb)
10750_2014_1817_MOESM5_ESM.tiff (22.6 mb)
ESM Fig. 5 Examples of ostracode species found in modern sediments of the SW arm of Lake Malawi. Gomphocythere emrysi (AD), Gomphocythere irvinei (EG), Gomphocythere huwi (HJ). A Right valve, external view, female, Site 94. B Left valve, ventral view, male, juvenile, Site 83. C Right valve, external view, male, juvenile, Site 89. D Carapace, dorsal view, female, Site 141. E Right valve, ventral view, female, Site 118. F Right valve, external view, female, Site 118. G Carapace, dorsal view, male, Site 36. H Right valve, dorsal view, female, Site 83. I Left valve, external view, female, juvenile, Site 83. J Right valve, external view, female, Site 83 (TIFF 23177 kb)
10750_2014_1817_MOESM6_ESM.tiff (21.8 mb)
ESM Fig. 6 Examples of ostracode species found in modern sediments of the SW arm of Lake Malawi. Alicenula serricaudata (AC), Candonopsis sp. (DE), Ilyocypris sp.1 (FI), Zonocypris costata (JL). A Left valve, external view, Site 36. B Right valve, internal view, Site 36. C Carapace, dorsal view, juvenile, Site 110. D Right valve, external view, Site 83. E Right valve, internal view, Site 83. F Left valve, external view, Site 34. G Carapace, dorsal view, Site 134. H Carapace, ventral view, Site 134. I Left valve, internal view, Site 133. J Right valve, external view, Site 136. K Carapace, dorsal view, Site 36. L Carapace, ventral view, Site 35 (TIFF 22306 kb)
10750_2014_1817_MOESM7_ESM.tiff (22.6 mb)
ESM Fig. 7 Examples of ostracode species found in modern sediments of the SW arm of Lake Malawi. Limnocythere s.l. sp.1 (AF). Limnocythere s.l. sp.2 (GH). Limnocythere s.l. sp.3 (IJ). Limnocythere s.l. sp.4 (KL). Limnocythere s.l. sp.6 (MN). Limnocythere s.l. sp.8 (O). A Left valve, external view, male, Site 23. B Left valve, external view, female, Site 32. C Carapace, dorsal view, female, Site 33. D Left valve, external view, male, juvenile, Site 133. E Left valve, internal view, female, Site 32. F Left valve, external view, female, juvenile, Site 80. G Left valve, external view, female, Site 35. H Carapace, dorsal view, male, Site 35. I Carapace, ventral view, female, Site 92. J Left valve, external view, female, Site 91. K Right valve, external view, female, Site 92. L Carapace, dorsal view, male?, Site 133. M Left valve, external view, male, Site 3. N Left valve, internal view, male, juvenile, Site 83. O Right valve, external view, male, Site 105 (TIFF 23142 kb)
10750_2014_1817_MOESM8_ESM.tiff (21 mb)
ESM Fig. 8 Examples of ostracode species found in modern sediments of the SW arm of Lake Malawi. Limnocythere s.l. sp.9 (AC). Limnocythere s.l. sp.10 (DF). Limnocythere s.l. sp.A n.sp. (GK). Limnocythere s.l. sp.B n.sp. (L). A Left valve, external view, female, Site 55. B Carapace, dorsal view, female, Site 90. C Left valve, external view, female, juvenile, Site 105. D Left valve, external view, male, Site 138. E Left valve, internal view, male, Site 90. F Left valve, external view, male, juvenile, Site 132. G Right valve, external view, male, Site 90. H Left valve, internal view, male, Site 90. I Right valve, external view, female, Site 92. J Left valve, internal view, female, Site 92. K Left valve, external view, female, juvenile, Site 106. L Right valve, external view, female?, Site 133 (TIFF 21466 kb)
10750_2014_1817_MOESM9_ESM.eps (485 kb)
ESM Fig. 9 LOG charred particle abundance plotted by depth and coded by environment. Offshore river sediments have the highest abundance across all depths (EPS 486 kb)
10750_2014_1817_MOESM10_ESM.eps (253 kb)
ESM Fig. 10 Standardized species richness (to a minimum of 25 individuals). All samples coded by environment, and plotted against depth (EPS 253 kb)
10750_2014_1817_MOESM11_ESM.eps (948 kb)
ESM Fig. 11 Limnological results taken from bottom waters along study transects of 1–25 m water depth and coded by shoreline environment type. a Bottom water temperature (°C). b Dissolved oxygen (DO) (%) (EPS 948 kb)
10750_2014_1817_MOESM12_ESM.eps (1.1 mb)
ESM Fig. 12 Particle size distribution plotted by depth and coded by environment. a Percentage silt-sized fraction. b Percentage clay-sized fraction (EPS 1077 kb)
10750_2014_1817_MOESM13_ESM.eps (1.3 mb)
ESM Fig. 13 Spatial distribution of sediment grain sizes presented proportionally in a pie graph at each site location (EPS 1309 kb)
10750_2014_1817_MOESM14_ESM.eps (1.1 mb)
ESM Fig. 14 LOI results. Each sample is plotted by depth and coded by environment. a Weight percent LOI 550°C (Organic Carbon Content). b Weight percent LOI 1000°C (inorganic carbon content) (EPS 1136 kb)
10750_2014_1817_MOESM15_ESM.docx (37 kb)
ESM Table 1 Listing of the site location information for each sample taken. “HR” = High Relief, “LR” = Low Relief. “Depth (m)” is the exact measured depth of each sample. “AdjDepth (m)” is the sample depth rounded to the nearest 5 m, in order to be able to group depths as a categorical variable. All depths were within one-half meter, if taken by PONAR grab-sampler. Depths along SCUBA transects were more continuous between 20 and 5 m depth, and are the samples most affected (DOCX 37 kb)
10750_2014_1817_MOESM16_ESM.docx (46 kb)
ESM Table 2a List of all data discussed in the text, sorted by sample number, with associated transect, adjusted depth, and shoreline environment included. Zeros have been removed for readability (DOCX 45 kb)
10750_2014_1817_MOESM17_ESM.docx (42 kb)
ESM Table 2b List of all data discussed in the text, sorted by sample number. Associated transect, adjusted depth, and shoreline environment are listed in ESM Table 2a. Zeros have been removed for readability (DOCX 42 kb)
10750_2014_1817_MOESM18_ESM.docx (72 kb)
ESM Table 3 Full listing of all ostracode species found by site number, as well as number of species (species richness), total number of ostracode valves recovered, the abundance of each species, and the percent abundance of that species (DOCX 72 kb)
10750_2014_1817_MOESM19_ESM.docx (15 kb)
Supplementary material 19 (DOCX 15 kb)

References

  1. Abdallah, A. M., 2003. Environmental factors controlling the distributions of benthic invertebrates on rocky shores of Lake Malawi, Africa. Journal of Great Lakes Research 29: 202–215.CrossRefGoogle Scholar
  2. Alin, S. & A. S. Cohen, 2004. The live, the dead, and the very dead: taphonomic calibration of the recent record of paleoecological change in Lake Tanganyika, East Africa. Paleobiology 30(1): 44–81.CrossRefGoogle Scholar
  3. Baker, A. L., K. K. Baker & P. A. Tyler, 1985. Close interval sampling of migrating Chaoborus larvae across the chemocline of meromictic Lake Fidler, Tasamania. Archiv Fur Hydrobiologie 103(1): 51–59.Google Scholar
  4. Bennett, K. D., 2007. psimpoll, 4.27 edn.Google Scholar
  5. Birks, H. J. B., 2003. Direct Gradient Analysis. Department of Botany: 1–23.Google Scholar
  6. Birks, H. J. B. & J. M. Line, 1992. The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene 2: 1–10.Google Scholar
  7. Cocquyt, C. & R. Jahn, 2007. Surirella fuellebornii (Bacillariophyta) and related taxa: lectotypification and distribution. Systematics and Geography of Plants 77(2): 213–228.Google Scholar
  8. Cohen, A. S., 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, Oxford.Google Scholar
  9. Cohen, A. S., R. Dussinger & J. Richardson, 1983. Lacustrine paleochemical interpretations based on eastern and southern African ostracodes. Palaeogeography, Palaeoclimatology, Palaeoecology 43: 129–151.CrossRefGoogle Scholar
  10. Cohen, A. S., J. R. Stone, K. R. M. Beuning, L. E. Park, P. N. Reinthal, D. Dettman, C. A. Scholz, T. C. Johnsor, J. W. King, M. R. Talbot, E. T. Brown & S. J. Ivory, 2007. Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proceedings of the National Academy of Sciences USA 104: 16422–16427.CrossRefGoogle Scholar
  11. Dawidowicz, P., J. Pijanowska & K. Ciechomski, 1990. Vertical migration of chaoborus larvae is induced by the presence of fish. Limnology and Oceanography 35(7): 1631–1637.CrossRefGoogle Scholar
  12. Dean, W. E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44: 242–248.Google Scholar
  13. Delorme, L. D., 1969. Ostracodes as Quaternary paleoecological indicators. Canadian Journal of Earth Sciences 6: 1471–1476.Google Scholar
  14. Eccles, D. H., 1974. An outline of the physical limnology of Lake Malawi (Lake Nyasa). Limnology and Oceanography 19: 730–742.CrossRefGoogle Scholar
  15. Finney, B. P. & T. C. Johnson, 1991. Sedimentation in Lake Malawi (East Africa) during the past 10,000 years: a continuous paleoclimatic record from the southern tropics. Palaeogeography, Palaeoclimatology, Palaeoecology 85(3–4): 351–366.CrossRefGoogle Scholar
  16. Fritz, S. C., 1996. Paleolimnological records of climatic change in North America. Limnology and Oceanography 41: 882–889.CrossRefGoogle Scholar
  17. Gasse, F., S. Juggins & L. B. Khelifa, 1995. Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 117: 31–54.CrossRefGoogle Scholar
  18. Gibbs, R. J., M. D. Matthews & D. A. Link, 1971. Relationship between sphere size and settling velocity. Journal of Sedimentary Petrology 41: 7–18.CrossRefGoogle Scholar
  19. Guy-Ohlson, D., 1992. Botryococcus as an aid in the interpretation of palaeoenvironment and depositional processes. Review of Palaeobotany and Palynology 71(1–4): 1–15.Google Scholar
  20. Halfman, J. D., 1993. Water column characteristics from modern CTD data, Lake Malawi, Africa. Journal of Great Lakes Research 19: 512–520.CrossRefGoogle Scholar
  21. Halfman, J. D., 1996. CTD-Transmissometer Profiles from Lakes Malawi and Turkana. In Johnson, T. C. & E. O. Odada (eds), The Limnology, Climatology and Paleoclimatology of the East African Lakes. Gordon and Breach, Amsterdam: 169–182.Google Scholar
  22. Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.CrossRefGoogle Scholar
  23. Holmes, J. A., 1992. Nonmarine ostracods as Quaternary palaeoenvironmental indicators. Progress in Physical Geography 16: 405–431.CrossRefGoogle Scholar
  24. Horne, D. J., 2007. A mutual temperature range method for Quaternary paleoclimatic analysis using European nonmarine Ostracoda. Quaternary Science Reviews 26: 1398–1415.CrossRefGoogle Scholar
  25. Howe, H. V., 1955. Handbook of Ostracod Taxonomy. Louisiana State University Press, Baton Rouge.Google Scholar
  26. Juggins, S., 2009. Analysis of Environmental Data – Constrained Ordination. School of Geography, Politics & Sociology. Newcastle University.Google Scholar
  27. Kempf, E. K., 1980. Index and Bibliography of Nonmarine Ostracoda, Vol. 1. Geologisches Institut Der Universitaet Zu Koeln, Koeln.Google Scholar
  28. Klie, W., 1944. Ostracoda Exploration du Parc National Albert: Mission H Damas (1935–1936). Instituut der Nationale Parken van Belgisch Congo, Brussels.Google Scholar
  29. Malawi Government, 2003. Nkhudzi Bay to Malembo (map). Department of Surveys – Hydrographic Unit, Malawi.Google Scholar
  30. Martens, K., 1986. Taxonomic Revision of the Subfamily Megalocypridinae Rome, 1965 (Crustacea, Ostracoda). Paleis der Academien, Brussels.Google Scholar
  31. Martens, K., 1988. Seven new species and two new subspecies of Sclerocypris SARS, 1924 from Africa, with new records of some other Megalocypridinids (Crustacea, Ostracoda). Hydrobiologia 162: 243–273.CrossRefGoogle Scholar
  32. Martens, K., 2002. Task 3: Taxonomy of Invertebrates. In Irvine, K. (ed.) The Trophic Ecology of the Demersal Fish Community of Lake Malawi/Niassa, Central Africa: 49–59.Google Scholar
  33. Martens, K., 2003. On the evolution of Gomphocythere (Crustacea, Ostracoda) in Lake Nyassa/Malawi (East Africa), with the description of 5 new species. Hydrobiologia 497: 121–144.CrossRefGoogle Scholar
  34. Mezquita, F., J. R. Roca, J. M. Reed & G. Wansard, 2005. Quantifying species–environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: examples using Iberian data. Palaeogeography, Palaeoclimatology, Palaeoecology 225: 93–117.CrossRefGoogle Scholar
  35. Mischke, S., D. Fuchs, F. Riedel & M. E. Schudack, 2002. Mid to Late Holocene palaeoenvironment of Lake Eastern Juyanze (north-western China) based on ostracods and stable isotopes. Geobios 35: 99–110.CrossRefGoogle Scholar
  36. Neale, J. W., 1979. On the Genus Cyprinotus and its Interpretation. In Krstic, N. (ed.), Proceedings of VII International Symposium on Ostracodes: Taxonomy, Biostratigraphy and Distribution of Ostracodes. Serbian Geological Society, Beograd, Serbia: 77–85.Google Scholar
  37. Oksanen, J., 2004. Ordination and environment. Department of Biology. University of Oulu, Finland: 122–152.Google Scholar
  38. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens & H. Wagner, 2011. vegan: Community Ecology Package. R package version 2.0-1 edn.Google Scholar
  39. Otu, M. K., P. Ramlal, P. Wilkinson, R. I. Hall & R. E. Hecky, 2011. Paleolimnological evidence of the effects of recent cultural eutrophication during the last 200 years in Lake Malawi, East Africa. Journal of Great Lakes Research 37(1): 61–74.CrossRefGoogle Scholar
  40. Park, L. E. & A. S. Cohen, 2011. Paleoecological response of ostracods to early Late Pleistocene lake-level changes in Lake Malawi, East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 303: 71–80.CrossRefGoogle Scholar
  41. Patterson, G. & O. Kachinjika, 1995. Limnology and phytoplankton ecology. In Menz, A. (ed.), The Fishery Potential and Productivity of the Pelagic Zone of Lake Malawi/Niassa. Natural Resource Institute, Chatham: 1–67.Google Scholar
  42. Pilskaln, C. H. & T. C. Johnson, 1991. Seasonal signals in Lake Malawi sediments. Limnology and Oceanography 36: 544–557.CrossRefGoogle Scholar
  43. R Development Core Team, 2010. R: A language and environment for statistical computing, 2.12.0 ed. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  44. Reinthal, P. N., A. S. Cohen & D. L. Dettman, 2011. Fish fossils as paleo-indicators of ichthyofauna composition and climatic change in Lake Malawi, Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 303: 126–132.CrossRefGoogle Scholar
  45. Rossetti, G. & K. Martens, 1998. Taxonomic revision of the Recent and Holocene representatives of the Family Darwinulidae (Crustacea, Ostracoda), with a description of three new genera. Biologie 68: 55–110.Google Scholar
  46. Ryan, W. B. F., S. M. Carbotte, J. O. Coplan, S. O’Hara, A. Melkonian, R. Arko, R. A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, J. Bonczkowski & R. Zemsky, 2009. Global multi-resolution topography synthesis. Geochemistry Geophysics Geosystems 10: Q03014.CrossRefGoogle Scholar
  47. Sars, G. O., 1910. Zoological Results of the Third Tanganyika Expedition, conducted. Proceedings of the Zoological Society of London: 732–760.Google Scholar
  48. Sars, G. O., 1924. The freshwater Entomostraca of the Cape Province (Union of South Africa). Annals of the South African Museum 20: 105–193.Google Scholar
  49. Smith, A. J., 1993. Lacustrine ostracodes as hydrochemical indicators in lakes of the north-central United States. Journal of Paleolimnology 8: 121–134.Google Scholar
  50. Strayer, D. L., 2010. Benthic Invertebrate Fauna, Lakes and Reservoirs. In Likens, G. E. (ed.), Lake Ecosystem Ecology: A Global Perspective. Elsevier, Amsterdam: 27–41.Google Scholar
  51. ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advanced Ecological Research 18: 271–317.CrossRefGoogle Scholar
  52. Thevenon, F., D. Williamson, A. Vincens, M. Taieb, O. Merdaci, M. Decobert & G. Buchet, 2003. A late-Holocene charcoal record from Lake Masoko, SW Tanzania: climatic and anthropologic implications. Holocene 13(5): 785–792.CrossRefGoogle Scholar
  53. Van Harten, D., 1979. Some new shell characters to diagnose the species of the Ilyocypris gibba-biplicata-bradyi group and their ecological significance. In Krstic, N. (ed.), Proceedings of VII International Symposium on Ostracodes: Taxonomy, Biostratigraphy and Distribution of Ostracodes. Serbian Geological Society, Geograd, Serbia: 71–76.Google Scholar
  54. Vincens, A., G. Buchet, D. Williamson & M. Taieb, 2005. A 23,000 year pollen record from Lake Rukwa (8°S, SW Tanzania): New data on vegetation dynamics and climate in Central Eastern Africa. Review of Palaeobotany and Palynology 137: 147–162.CrossRefGoogle Scholar
  55. Whitlock, C. & S. H. Millspaugh, 1996. Testing the assumptions of fire history studies: An examination of modern charcoal accumulation in Yellowstone National Park, USA. Holocene 6(1): 7–15.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Margaret Whiting Blome
    • 1
  • Andrew S. Cohen
    • 2
  • Matthew J. Lopez
    • 3
  1. 1.BP AmericaHoustonUSA
  2. 2.University of ArizonaTucsonUSA
  3. 3.Tucson High SchoolTucsonUSA

Personalised recommendations