Hydrobiologia

, Volume 737, Issue 1, pp 225–243 | Cite as

Evaluating climate change impacts on Alpine floodplain vegetation

  • Emilio Politti
  • Gregory Egger
  • Karoline Angermann
  • Rui Rivaes
  • Bernadette Blamauer
  • Mario Klösch
  • Michael Tritthart
  • Helmut Habersack
PLANTS IN HYDROSYSTEMS

Abstract

This study aims to evaluate the long-term impacts of climate change on Alpine riparian vegetation. Special attention is given to the hydrological factors influencing the establishment, development, and retrogression of riparian vegetation. The study has been carried out in a reach of the upper course of the Drau River (Austria). Long-term effects of climate change on the local riparian vegetation were simulated using a dynamic vegetation model. The model simulates annual time steps, and provides the spatial and quantitative vegetation distribution changes over time. Climate change impacts have been estimated by performing five simulations, spanning 31 years. The first simulation was based on the reference period 1960–1990 while the remaining four were based on the sub-scenarios of the IPCC storyline A1B. Simulation results show consistent variations in both the distributions of quantitative and spatio-temporal vegetation type, primarily due to peak discharges alterations rather than to the mean spring discharges which typically influence the recruitment. Climate change scenarios forecasting an overall increase of peak discharge lead to prevailing retrogression as opposed to successional processes. Conversely, in the climate change scenarios with peak flow reduction, successional processes are dominant and vegetation is predicted to expand into the active channel.

Keywords

Riparian ecosystem modeling Climate change Alpine floodplain vegetation Long-term assessment 

Notes

Acknowledgments

The authors would like to thank to the Carinthian government for authorizing the field work at the Drau River and we gratefully acknowledge funding through the Austrian climate and energy fonds within the ACRP program (project no. A963615). A special acknowledgment to Erwin Lautsch for the support in the data analysis and interpretation and Jeffrey Tuhtan for the finalization of the manuscript. Rui Rivaes benefited from a PhD grant from Universidade Técnica de Lisboa.

References

  1. Anderson, B. G., I. D. Rutherfurd & A. W. Western, 2006. An analysis of the influence of riparian vegetation on the propagation of flood waves. Environmental Modelling and Software 21: 1290–1296.CrossRefGoogle Scholar
  2. Azami, K., H. Suzuki & S. Toki, 2004. Changes in riparian vegetation communities below a large dam in a monsoonal region: futase Dam, Japan. River Research and Applications 20: 549–563.CrossRefGoogle Scholar
  3. Bejarano, M. D., C. Nilsson, M. González Del Tánago & M. Marchamalo, 2011. Responses of riparian trees and shrubs to flow regulation along a boreal stream in northern Sweden. Freshwater Biology 56(5): 853–866.CrossRefGoogle Scholar
  4. Bendix, J., 1999. Stream power influence on southern California riparian vegetation. Journal of Vegetation Science 10: 243–252.CrossRefGoogle Scholar
  5. Bendix, J. & C. R. Hupp, 2000. Hydrological and geomorphological impacts on riparian plant communities. Hydrological Processes 14: 2977–2990.CrossRefGoogle Scholar
  6. Benjankar, R., 2009. Quantification of Reservoir Operation-Based Losses to Floodplain Physical Processes and Impact on the Floodplain Vegetation at Kootenai River, USA. University of Idaho, Moscow.Google Scholar
  7. Benjankar, R., N. F. Glenn, G. Egger, K. Jorde & P. Goodwin, 2010. Comparison of field-observed and simulated map output from a dynamic floodplain vegetation model using remote sensing and GIS techniques. GIScience & Remote Sensing 47: 480–497.CrossRefGoogle Scholar
  8. Benjankar, R., G. Egger, K. Jorde, P. Goodwin & N. F. Glenn, 2011. Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management 92: 3058–3070.PubMedCrossRefGoogle Scholar
  9. Benjankar, R., K. Jorde, E. M. Yager, G. Egger, P. Goodwin & N. F. Glenn, 2012. The impact of river modification and dam operation on floodplain vegetation succession trends in the Kootenai River, USA. Ecological Engineering 46: 88–97.CrossRefGoogle Scholar
  10. BMLFUW, 2010. Hydrographisches Jahrbuch von Österreich 2008. Abteilung VII 3: Wasserhaushalt BMLFUW, 116. Band, Wien.Google Scholar
  11. Böhm, R., 2008. Hard and soft facts concerning climate change: an overview. ÖWAV (Hrsg.): Auswirkungen des Klimawandels auf die österreichische Wasserwirtschaft, BMLFUW und ÖWAV, Wien [in German].Google Scholar
  12. Böhm, R., Godina, R., Nachtnebel, H.-P., Pirker, O., 2008. Mögliche Klimafolgen für die Wasserwirtschaft in Österreich. In ÖWAV (Hrsg.): Auswirkungen des Klimawandels auf die österreichische Wasserwirtschaft, BMLFUW und ÖWAV, Wien.Google Scholar
  13. Braatne, J. H., R. Jamieson, M. Gill & S. B. Rood, 2007. Instream flows and the decline of riparian cottonwoods along the Yakima River, Washington, USA. River Research and Applications 267: 247–267.CrossRefGoogle Scholar
  14. Camporeale, C., E. Perucca, L. Ridolfi & A. M. Gurnell, 2013. Modeling the interactions between river morphodynamics and riparian vegetation. Reviews of Geophysics 51(2013): 1–36.Google Scholar
  15. Carter T. R., Hulme M., Lal M., 1999. Guidelines on the use of scenario data for climate impact and adaptation assessment. Version 1. Change, IPoC (eds), Intergovernmental Panel On Climate Change: 69 pp. [in page 7].Google Scholar
  16. Clements, F. E., 1916. Plant Succession an Analysis of the Development of Vegetation. Carnegie Institution of Washington, Washington, DC.CrossRefGoogle Scholar
  17. Cleveland, W. S., Grosse, E. & Shyu, W. M., 1992. Local regression models. Statistical Models in S, Chapter 8. Chapman & Hall, London.Google Scholar
  18. De Kok, J. L. & M. Booij, 2009. Deterministic-statistical model coupling in a DSS for river-basin management. Environmental Modeling and Assessment 14(5): 595–606.CrossRefGoogle Scholar
  19. Dixon, M. D. & M. G. Turner, 2006. Simulated Recruitment of riparian trees and shrubs under natural and regulated flow regimes on the Wisconsin River, USA. River Research and Applications 22: 1057–1083.CrossRefGoogle Scholar
  20. Edwards, P. J., J. Kollmann, A. M. Gurnell, G. E. Petts, K. Tockner & J. V. Ward, 1999. A conceptual model of vegetation dynamics on gravel bars of a large Alpine river. Wetlands Ecology and Management 7: 141–153.CrossRefGoogle Scholar
  21. Egger, G., E. Politti, H. Woo, K. -H. Cho, M. Park, H. Cho, R. Benjankar, N. Lee & H. Lee, 2012. Dynamic vegetation model as a tool for ecological impact assessments of dam operation. Journal of Hydro-Environment Research 6: 151–161.CrossRefGoogle Scholar
  22. Egger, G., Politti, E., Garófano-Gómez, V., Blamauer B., Ferreira M. T., Rivaes, R., Benjankar, R., Habersack, H., 2013. Embodying interactions of riparian vegetation and fluvial processes into a dynamic floodplain model: concepts and applications. In Maddock I., A. Harby, P. Kemp & P. Wood (eds) Ecohydraulics: An Integrated Approach. Wiley, Chichester.Google Scholar
  23. Formayer, H., Kromp-Kolb, H., 2007. Effects of climate change on floods in Upper Austria. Band 2 der Forschungsreihe: Auswirkungen des Klimawandels auf Oberösterreich. Institut für Meteorologie BOKU, Wien [in German]Google Scholar
  24. Friedman, M. J., W. R. Osterkamp & M. L. Lewis, 1996. Channel narrowing and vegetation development following a great plains flood. Ecology 77: 2167–2181.CrossRefGoogle Scholar
  25. Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.CrossRefGoogle Scholar
  26. García-Arias, A., F. Francés, T. Ferreira, G. Egger, F. Martínez-Capel, V. Garófano-Gómez, I. Andrés-Doménech, E. Politti, R. Rivaes & P. M. Rodríguez-González, 2012. Implementing a dynamic riparian vegetation model in three European river systems. Ecohydrology 6(4): 635–651.CrossRefGoogle Scholar
  27. Gobiet, A., Truhetz, H., 2008. Climate models, climate scenarios and their importance for Austria. In ÖWAV (Hrsg.): Auswirkungen des Klimawandels auf die österreichische Wasserwirtschaft, BMLFUW und ÖWAV, Wien [in German].Google Scholar
  28. Grabherr, G., M. Gottfried & H. Pauli, 2010. Climate change impacts in alpine environments. Geography 8: 1133–1153.Google Scholar
  29. Graf, M., 1992. Morphological characterization of the Upper Drau River: basics for the water management concept. Diplomarbeit am Institut für Wasserwirtschaft, Hydrologie und konstruktivem Wasserbau, Universität für Bodenkultur Wien [in German].Google Scholar
  30. Gurnell, A. M., H. Piegay, F. J. Swanson & S. V. Gregory, 2002. Large wood and fluvial processes. Freshwater Biology 47: 601–619.CrossRefGoogle Scholar
  31. Gurnell, A. M., N. Surian & L. Zanoni, 2009. Multi-thread river channels: a perspective on changing European alpine river systems. Aquatic Sciences 71: 253–265.CrossRefGoogle Scholar
  32. Habersack, H., Wagner, B., Hauer, C., Jäger, E., Krapesch, G., Strahlhofer, L., Volleritsch, M., Holzapfel, P., Schmutz, S., Schinegger, R., Pletterbauer, F., Formayer H., Gerersdorfer, T., Pospichal, B., Prettenthaler, F., Steiner, D., Köberl, J., Rogler, N., 2011. DSS_KLIM:EN: Entwicklung eines Decision Support Systems zur Beruteilung der Wechselwirkungen zwischen Klimawandel, Energie aus Wasserkraft und Ökologie. Enbericht. Studie im Auftrag der Kommunalkredit Austria AG, gefördert vom Klima- und Energiefonds, Wien: 132 pp.Google Scholar
  33. Harper, E. B., J. C. Stella & A. K. Fremier, 2011. Global sensitivity analysis for complex ecological models: a case study of riparian cottonwood population dynamics. Ecological Applications: A Publication of the Ecological Society of America 21: 1225–1240.CrossRefGoogle Scholar
  34. Hohensinner, S., G. Haidvogl, M. Jungwirth, S. Muhar, S. Preis & S. Schmutz, 2005. Historical analysis of habitat turnover and age distributions as a reference for restoration of Austrian Danube floodplains. WIT Transactions on Ecology and the Environment 83: 489–502.Google Scholar
  35. IBM Corp. Released, 2011. IBM SPSS Statistics for Windows, Version 20.0. IBM Corp., Armonk, NY.Google Scholar
  36. IPCC, 2001. In Houghton J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, & X. Dai, et al. (eds), Climate change 2001: the scientific basis, first. Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
  37. Karrenberg, S. & M. Suter, 2003. Phenotypic trade-offs in the sexual reproduction of Salicaceae from flood plains. American Journal of Botany 90: 749–754.PubMedCrossRefGoogle Scholar
  38. Karrenberg, S., P. J. Edwards & J. Kollmann, 2002. The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology 47: 733–748.CrossRefGoogle Scholar
  39. Kranzl, L., Haas, R., Kalt, G., Müller, A., Nakicenovic, N., Redl, C., Formayer, H., Haas, P., Lexer, M. -J., Seidl, R., Schörghuber, S., Nachtnebel, H. P., Stanzel, P., 2010. Ableitung von prioritären Maßnahmen zur Adaption des Energiesystems an den Klimawandel: “KlimAdapt”-Endbericht Klima-und Energiefonds des Bundes, 225S.Google Scholar
  40. Kovalchik, B. L. & R. R. Clausnitzer., 2004. Classification and management of aquatic, riparian, and wetland sites on the National Forests of eastern Washington: series description, United States Department of Agriculture, Forest Service, Pacific Northwest Research Station. General Technical Report PNW-GTR-593, Portland, pp 354.Google Scholar
  41. Kundzewicz, Z. W., 2008. Climate change impacts on the hydrological cycle. Ecohydrology and Hydrobiology 8: 195–203.CrossRefGoogle Scholar
  42. Lytle, D. A. & D. M. Merritt, 2004. Hydrologic regimes and riparian forests: a structured population model for cottonwood. Ecology 85(9): 2493–2503.CrossRefGoogle Scholar
  43. Mader, H., Steidl, T., Wimmer, R., 1996. Hydrological regimes of Austrian rivers: a contribution to a national River typology. Monographien Band 82, Umweltbundesamt, Wien [in German].Google Scholar
  44. Mahoney, J. M. & S. B. Rood, 1998. Stream flow requirements for cottonwood seedling recruitment: an integrative model. Wetlands 18: 634–645.CrossRefGoogle Scholar
  45. McCarthy J. J., O. F. Canziani, N. A. Leary, D. J. Dokken, & K. S. White, 2001. Climate change 2001: impacts, adaptation and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press. Cambridge, UK: 1032 pp. [in page 166].Google Scholar
  46. Merritt, D. M. & D. J. Cooper, 2000. Riparian vegetation and channel change in response to river regulation: a comparative study of regulated and unregulated streams in the Green River Basin, USA. Regulated Rivers Research and Management 564: 543–564.CrossRefGoogle Scholar
  47. Meyer, J. L., M. J. Sale, P. J. Mulholland & N. L. Poff, 1999. Impacts of climate change on aquatic ecosystem functioning and health. Journal of the American Water Resources Association 35: 1373–1386.CrossRefGoogle Scholar
  48. Moradkhani, H., R. G. Baird & S. A. Wherry, 2010. Assessment of climate change impact on floodplain and hydrologic ecotones. Journal of Hydrology 395: 264–278.CrossRefGoogle Scholar
  49. Murphy, M. L. & K. V. Koski, 1989. Input and depletion of woody debris in Alaska streams and implications for streamside management. North American Journal of Fisheries Management 9: 427–436.CrossRefGoogle Scholar
  50. Nachtnebel, H.-P., Zimmermann, E., Habersack, H., Graf, M., 1992. The water management concept, Workpackage hydrology and flood protection. Bundesministerium für Land- und Forstwirtschaft und des Amtes der Wasserwirtschaft Spittal/Drau [in German].Google Scholar
  51. Naiman, R. J., H. Décamps & M. E. McClain, 2005. Riparia. Elsevier Academic Press, San Diego, CA, USA.Google Scholar
  52. Nakicenovic, N., O. Davidson, G. Davis, A. Grübler, T. Kram, E. Lebre La Rovere, B. Metz, T. Morita, W. Pepper, H. Pitcher, A. Sankovski, P. Shukla, R. Swart, R. Watson & Z. Dadi, 2000. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  53. Palmer, M. A., C. A. Reidy Liermann, C. Nilsson, M. Flörke, J. Alcamo, P. S. Lake & N. Bond, 2008. Climate change and the world’s river basins: anticipating management options. Frontiers in Ecology and the Environment 6: 81–89.CrossRefGoogle Scholar
  54. Pauli, H., M. Gottfried & G. Grabherr, 2003. Effects of climate change on the alpine and nival vegetation of the Alps. Arctic 7: 9–12.Google Scholar
  55. Perona, P., C. Camporeale, E. Perucca, M. Savina, P. Molnar, P. Burlando & L. Ridolfi, 2009. Modelling river and riparian vegetation interactions and related importance for sustainable ecosystem management. Aquatic Sciences: Research Across Boundaries 71(3): 266–278.CrossRefGoogle Scholar
  56. Polzin, M. L. & S. B. Rood, 2000. Effects of damming and flow stabilization on riparian processes and black cottonwoods along the Kootenay River. Rivers 7: 221–232.Google Scholar
  57. Polzin, M. L. & S. B. Rood, 2006. Effective disturbance: seedling safe sites and patch recruitment of riparian cottonwoods after a major flood of a mountain river. Wetlands 26: 965–980.CrossRefGoogle Scholar
  58. Primack, A. B., 2000. Simulation of climate-change effects on riparian vegetation in the Pere Marquette River, Michigan. Wetlands 20(3): 538–547.CrossRefGoogle Scholar
  59. Richards, K., J. Brasington & F. Hughes, 2002. Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshwater Biology 47: 559–579.CrossRefGoogle Scholar
  60. Rivaes, R., P. M. Rodríguez-González, A. Albuquerque, A. Pinheiro, G. Egger & M. T. Ferreira, 2013. Riparian vegetation responses to altered flow regimes driven by climate change in Mediterranean rivers. Ecohydrology 6: 413–424.CrossRefGoogle Scholar
  61. Schädler B., Frei C., Grebner D., & Willi H. P., 2007. Basic information for climate. Wasser Energie Luft-99. Jahrgang, Heft 1, CH-5401 Baden, Seite 58–60 [in German].Google Scholar
  62. Schumm, S. A. & R. W. Lichty, 1965. Time, space, and causality in geomorphology. American Journal of Science 263: 110–119.CrossRefGoogle Scholar
  63. Shafroth, P. B., G. T. Auble, J. C. Stromberg & D. T. Patten, 1998. Establishment of woody riparian vegetation in relation to annual patterns of stream flow, Bill Williams River, Arizona. Wetlands 18: 577–590.CrossRefGoogle Scholar
  64. Ström, L., R. Jansson, C. Nilsson, M. E. Johansson & S. Xiong, 2011. Hydrologic effects on riparian vegetation in a boreal river: an experiment testing climate change predictions. Global Change Biology 17: 254–267.CrossRefGoogle Scholar
  65. Ström, L., R. Jansson & C. Nilsson, 2012. Projected changes in plant species richness and extent of riparian vegetation belts as a result of climate-driven hydrological change along the Vindel River in Sweden. Freshwater Biology 57(1): 49–60.CrossRefGoogle Scholar
  66. Stromberg, J. C., J. Fry & D. T. Patten, 1997. Marsh development after large floods in an alluvial, arid-land river. Wetlands 17: 292–300.CrossRefGoogle Scholar
  67. Stromberg, J. C., S. J. Lite, R. Marler, C. Paradzick, P. B. Shafroth, D. Shorrock, J. M. White & M. S. White, 2007. Altered stream-flow regimes and invasive plant species: the Tamarix case. Global Ecology and Biogeography 16: 381–393.CrossRefGoogle Scholar
  68. Stromberg, J. C., S. J. Lite & M. D. Dixon, 2010. Effects of stream flow patterns on riparian vegetation of a semiarid river: implications for a changing climate. River Research and Applications 26: 712–729.Google Scholar
  69. Theurillat, J. P. & A. Guisan, 2001. Potential impact of climate change on vegetation in the European Alps. Climatic Change 50: 77–109.CrossRefGoogle Scholar
  70. Thoms, M. C. & M. Parsons, 2002. Eco-geomorphology: an interdisciplinary approach to river science. Management 52: 113–120.Google Scholar
  71. Tockner, K., J. V. Ward, P. J. Edwards & J. Kollmann, 2002. Riverine landscapes: an introduction. Freshwater Biology 47: 497–500.CrossRefGoogle Scholar
  72. Tritthart, M., 2005. Three-dimensional numerical modelling of turbulent river flow using polyhedral finite volumes, Wiener Mitteilungen 193, TU Wien, Wien.Google Scholar
  73. Tritthart, M., B. Schober & H. Habersack, 2011. Non-uniformity and layering in sediment transport modelling 1: flume simulations. Journal of Hydraulic Research 49(3): 325–334.CrossRefGoogle Scholar
  74. Ward, J. H. J., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58: 236–244.CrossRefGoogle Scholar
  75. Whited, D. C., M. S. Lorang, M. J. Harner, F. R. Hauer, J. S. Kimball & J. A. Stanford, 2007. Climate, hydrologic disturbance, and succession: drivers of floodplain pattern. Ecology 88: 940–953.PubMedCrossRefGoogle Scholar
  76. Whittaker, R. H. & G. M. Woodwell, 1982. Retrogression and coenocline distance. Handbook of Vegetation Science 5–2: 51–70.Google Scholar
  77. ZAMG, 2013. Zentralanstalt fur Meteorologie un Geodynamik http://www.zamg.ac.at/cms/de/klima/informationsportal-klimawandel/klimakarten. Accessed 02 0213.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Emilio Politti
    • 1
  • Gregory Egger
    • 1
  • Karoline Angermann
    • 1
  • Rui Rivaes
    • 2
  • Bernadette Blamauer
    • 3
  • Mario Klösch
    • 3
  • Michael Tritthart
    • 3
  • Helmut Habersack
    • 3
  1. 1.Environmental Consulting LtdKlagenfurtAustria
  2. 2.Forest Research Center, Instituto Superior de AgronomiaUniversidade Técnica de LisboaLisbonPortugal
  3. 3.Christian Doppler Laboratory for Advanced Methods in River Monitoring, Modelling and Engineering, Institute of Water Management, Hydrology and Hydraulic Engineering-Department of WaterAtmosphere and Environment-University of Natural Resources and Life SciencesViennaAustria

Personalised recommendations