Hydrobiologia

, Volume 728, Issue 1, pp 1–21 | Cite as

Phytoplankton spatial distribution on the Continental Shelf off Rio de Janeiro, from Paraíba do Sul River to Cabo Frio

  • Gleyci A. O. Moser
  • Robson Alves Takanohashi
  • Mariana de Chagas Braz
  • Domênica Teixeira de Lima
  • Fabiana Vasconcelos Kirsten
  • Josefa Varela Guerra
  • Alexandre M. Fernandes
  • Ricardo César Gonçalves Pollery
Primary Research Paper

Abstract

Given the heterogeneous oceanographic conditions observed in the continental shelf and slope off Rio de Janeiro, the phytoplankton community is expected to adapt to the diverse trophic conditions using distinct strategies. Considering the C-S-R triangle, distinct phytoplankton taxa are expected to occur in Tropical Water (TW), in South Atlantic Central Water (SACW) and in Coastal Water (CW). The study area extends from Paraíba do Sul River mouth to the region of Cabo Frio. Samples were collected on 28 stations, in 2011 austral summer. 209 phytoplankton taxa were observed, mainly dinoflagellates (93), diatoms (71), and coccolitophores (30). TW dominated the surface waters of the continental shelf and slope, and a typical tropical phytoplankton community, composed by stress-tolerant taxa, was observed. The rise in nitrate concentration caused by SACW uplift in the shelf and in the continental slope, at subsurface waters, and in silicate, associated with the Paraíba do Sul riverine plume, led to shifts in the phytoplankton community, increasing the contribution of ruderal taxa. The grouping of phytoplankton assemblages only in traditional groups would result in loss of information about the factors that determine community dynamics since the different species in each of these groups frequently share specific traits.

Keywords

Coccolitophores South Atlantic Central Water Hydrography indicators 

Supplementary material

10750_2013_1791_MOESM1_ESM.docx (80 kb)
Supplementary material 1 (DOCX 80 kb)
10750_2013_1791_MOESM2_ESM.docx (75 kb)
Supplementary material 2 (DOCX 74 kb)

References

  1. Acevedo-Trejos, E., G. Brandt, A. Merico & S. L. Smith, 2013. Biogeographical patterns of phytoplankton community size structure in the oceans. Global Ecology and Biogeography 22(9): 1060–1070.CrossRefGoogle Scholar
  2. Alves-De-Souza, C., M. T. Gonzalez & J. L. Iriarte, 2008. Functional groups in marine phytoplankton assemblages dominated by diatoms in fjords of southern Chile. Journal of Plankton Research 30(11): 1233–1243.CrossRefGoogle Scholar
  3. Aminot, A. & M. Chaussepied, 1983. Manuel des analyses chimiques en milieu marin. Brest Cedex, Centre National pour l’Exploitation des Océans Cnexo.Google Scholar
  4. Balech, E., 1977. El plancton como indicador oceanográfico. In Introduction al Fitoplancton Marino. Universitaria, Buenos Aires.Google Scholar
  5. Boltovskoy, D., 1999. South Atlanctic Zooplankton. Backhuys Publishers, Leiden.Google Scholar
  6. Boyd, P. W. & T. W. Trull, 2007. Understanding the export of biogenic particles in oceanic waters: is there consensus? Progress in Oceanography 72: 276–312.CrossRefGoogle Scholar
  7. Braga, E. S. & L. F. H. Niencheski, 2006. Composição das massas de água e seus potenciais produtivos na área entre o Cabo de São Tomé (RJ) e o Chuí (RS). In Rossi-Wongtschowski, C. L. B. & L. S.-P. Madureira (eds), O ambiente Oceanográfico da Plataforma Continental e do Talude na Região Sudeste-Sul do Brasil. EDUSP, São Paulo: 161–218.Google Scholar
  8. Brandini, F. P., 2006. Zooplankton and ichthyoplankton distribution on the southern Brazilian shelf: an overview. Scientia Marina 70: 189–202.Google Scholar
  9. Cacciari, P. L., J. Harari, J. E. R. Pereira & A. Talaska, 1994. Identificação e distribuição das massas d’água e da corrente de superfície sobre a plataforma e talude continental da Bacia de Campos no verão e no inverno de 1992. In Programa de monitoramento ambiental oceânico da Bacia de Campos (RJ). Relatório final. São Paulo, FUNDESPA: 302–372.Google Scholar
  10. Calado, L., I. C. A. Da Silveira, A. Gangopadhyay & B. M. De Castro, 2010. Eddy-induced upwelling off Cape Sao Tome (22 degrees S, Brazil). Continental Shelf Research 30: 1181–1188.CrossRefGoogle Scholar
  11. Carreira, R. S., E. A. Canuel, S. A. Macko, M. B. Lopes, L. G. Luz & L. N. Jasmin, 2012. On the accumulation of organic matter on the Southeastern Brazilian continental shelf: a case study based on a sediment core from the shelf off Rio de Janeiro. Brazilian Journal of Oceanography 60: 75–87.CrossRefGoogle Scholar
  12. Carreto, J. I., N. Montoya, R. Akselman, M. O. Carignan, R. I. Silva & D. A. C. Colleoni, 2008. Algal pigment patterns and phytoplankton assemblages in different water masses of the Río de la Plata maritime front. Continental Shelf Research 28: 1589–1606.CrossRefGoogle Scholar
  13. Castro-Filho, B. M., J. A. Lorenzzetti, I. C. A. Silveira & L. B. Miranda, 2006. Estrutura termohalina e circulação na região entre o Cabo de São Tomé (RJ) e o Chuí (RS). In Rossi-Wongtschowski, C. L. B. & L. S. P. Madureira (eds), O ambiente oceanográfico da plataforma continental e do talude na região sudeste-sul do Brasil. Editora da Universidade de São Paulo: 11–120.Google Scholar
  14. Chen, C. T. A., 2004. Exchanges of Carbon in the Coastal Oceans. In Field, C. B. & M. R. Raupach (eds), The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World. Island Press, Washington DC: 341–351.Google Scholar
  15. Ciotti, A. M., E. Gonzales-Rodrigues, L. Andrade, R. Paranhos & W. F. Carvalho, 2007. Clorofila a, medidas bio-ópticas e produtividade primária. In: Valentin, J. L. (Org.). Características hidrobiológicas da região da Zona Econômica Exclusiva brasileira. 1 ed. Brasilia 1: 61–72.Google Scholar
  16. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  17. Cupelo, A. C. G. 2000. As frações do pico, nano e microplâncton na profundidade do máximo de clorofila na Costa Central do Brasil. Dissertação de mestrado, Instituto Oceanográfico da Universidade de São Paulo.Google Scholar
  18. Ekau, W. & B. Knoppers, 1999. An introduction to the pelagic system of the North-East and East Brazilian shelf. Archive of Fishery and Marine Research 47: 113–125.Google Scholar
  19. Emílson, I., 1961. The shelf and coastal waters off Southern Brazil. Boletim do Instituto Oceanográfico, São Paulo 17: 101–112.Google Scholar
  20. Fernandes, L. F. & F. P. Brandini, 1999. Comunidades microplanctônicas no Oceano Atlântico Sul-Ocidental: biomassa e distribuição em novembro de 1992. Revista Brasileira de Oceanografia 47: 189–205.CrossRefGoogle Scholar
  21. Franco-Herrera, A., L. Castro & P. Tigreros, 2006. Plankton dynamics in the South Central Caribbean Sea: strong seasonal changes in a coastal tropical system. Caribbean Journal of Science 42: 24–38.Google Scholar
  22. Furtado, V. V., M. M. Mahiques, R. L. Barcelos, L. A. Conti & M. Rodrigues, 2008. Sedimentação. In A. M. S. P. Vanin (eds), Oceanografia de um ecossistema subtropical. Plataforma de São Sebastião, SP. Editora da Universidade de São Paulo 1: 141–180.Google Scholar
  23. Gaeta, S. A. & F. P. Brandini, 2006. Produção Primária do Fitoplâncton na Região entre Cabo de São Tomé (RJ) e o Chuí (RS). In Rossi-Wongtschowski, C. L. D. B. & L. S. P. Madureira (eds), O Ambiente Oceanográfico da Plataforma Continental e do Talude na Região Sudeste-Sul do Brasil. Editora da Universidade de São Paulo: 219–264.Google Scholar
  24. Gonçalves-Araujo, R., M. S. De Souza, C. R. B. Mendes, V. M. Tavano, R. C. Pollery & C. A. E. Garcia, 2012. Brazil-Malvinas confluence: effects of environmental variability on phytoplankton community structure. Journal of Plankton Research 34: 399–415.CrossRefGoogle Scholar
  25. Gonzalez-Rodriguez, E., J. L. Valentin, D. L. André & S. A. Jacob, 1992. Upwelling and downwelling at Cabo Frio (Brazil): Comparison of biomass and primary production responses. Journal of Plankton Research 14: 289–306.CrossRefGoogle Scholar
  26. Griffith, D. R., R. T. Barnes & P. A. Raymond, 2009. Inputs of fossil carbon from wastewater treatment plants to U.S. rivers and oceans. Environmental Science and Technology 43: 5647–5651.PubMedCrossRefGoogle Scholar
  27. Hanson, C. E., A. M. Waitea, P. A. Thompson & C. B. Pattiaratchi, 2007. Phytoplankton community structure and nitrogen nutrition in Leeuwin Current and coastal waters off the gascoyne region of Western Australia. Deep Sea Research Part II: Topical Studies in Oceanography 54(8–10):902–924.Google Scholar
  28. Harnstrom, K., I. Karunasagar & A. Godhe, 2009. Phytoplankton species assemblages and their relationship to hydrographic factors-a study at the old port in Mangalore, coastal Arabian sea. Indian Journal of Marine Sciences 38(2): 224–234.Google Scholar
  29. Jacquet, S., B. Delesalle, J. P. Torréton & J. Blanchot, 2006. Response of phytoplankton communities to increased anthropogenic influences (southwestern lagoon, New Caledonia). Marine Ecology Progress Series 320: 65–78.CrossRefGoogle Scholar
  30. Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55(3): 614–627.CrossRefGoogle Scholar
  31. Lacerda, S. R., M. L. Koening, S. Neumann-Leitão & M. J. Flores-Montes, 2004. Phytoplankton nyctemeral variation at a tropical river estuary (Itamaracá -Pernambuco – Brazil). Brazilian Journal Biology 64: 81–94.CrossRefGoogle Scholar
  32. Lewis Jr., W. M., 1976. Surface/volume ratio: implications for phytoplankton morphology. Science 192: 885–887.PubMedCrossRefGoogle Scholar
  33. Lopes, R. M., F. P. Brandini & S. A. Gaeta, 1992. Distribution patterns of epipelagic copepods off Rio de Janeiro (SE Brazil) in summer 1991/1992 and winter 1992. Hydrobiologia 411: 161–174.CrossRefGoogle Scholar
  34. Lorenzzetti, J. A., J. L. Stech, W. L. M. Filho & A. T. Assireu, 2009. Satellite observation of Brazil Current inshore thermal front in the SW South Atlantic: space/time variability and sea surface temperatures. Continental Shelf Research 29: 2061–2068.CrossRefGoogle Scholar
  35. Macmanus, G. B., B. A. Costas, H. G. Dam, R. M. Lopes, S. A. Gaeta, S. M. Susini & C. H. Rosetta, 2007. Microzooplankton grazing of phytoplankton in a tropical upwelling region. Hydrobiologia 575: 69–81.CrossRefGoogle Scholar
  36. Mann, K. H. & J. R. N. Lazier, 1991. Dynamics of Marine Ecosystems: Biological Physical Interactions in the Oceans. Blackwell Scientific Publications, Boston, MA.Google Scholar
  37. Margalef, R., 1997. Turbulence and marine life. Scientia Marina 61: 109–123.Google Scholar
  38. McClain, C. R., J. R. Christian, S. R. Signorini, M. R. Lewis, I. Asanumae, D. Turk & C. Dupouy-Douchement. 2002. Satellite ocean-color observations of the tropical Pacific Ocean, Deep Sea Research, Part II, 49:2533–2560.Google Scholar
  39. McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.CrossRefGoogle Scholar
  40. Mckinnon, A. D., M. G. Meekan, J. H. Carleton, M. J. Furnas, S. Duggan & W. Skirving, 2003. Rapid changes in shelf waters and pelagic communities on the southern Northwest Shelf, Australia, following a tropical cyclone. Continental Shelf Research 23: 93–111.CrossRefGoogle Scholar
  41. Munk, P., P. J. Wright & N. J. Phil, 2002. Distribution of the early larval stages of cod, plaice and lesser sandeel across haline fronts in the North Sea. Estuarine, Coastal and Shelf Science 55: 139–149.CrossRefGoogle Scholar
  42. Naselli-Flores, L., J. Padisak & M. Albay, 2007. Shape and size in phytoplankton ecology: do they matter? Hydrobiologia 578: 157–161.CrossRefGoogle Scholar
  43. Niencheski, L. F. H. & G. Fillmann, 1998. Características Químicas – Ambientes Costeiros e Marinhos e Sua Biota. In Seeliger, U., C. Odebrecht & J. P. Castello (eds), Os Ecossistemas Costeiros e Marinho do Extremo Sul do Brasil. Editora Ecoscientia, Rio Grande, RS.Google Scholar
  44. Odebrecht, C. & L. Djurfeldt, 1996. The role of nearshore mixing on phytoplankton size structure off Cape Santa Marta Grande, southern Brazil (Spring 1989). Archive of Fishery and Marine Research 43(3): 217–230.Google Scholar
  45. Olenina, I., S. Hajdu, L. Edler, A. Andersson, N. Wasmund, S. Busch, J. Göbel, S. Gromisz, S. Huseby, M. Huttunen, A. Jaanus, P. Kokkonen, I. Ledaine & E. Niemkiewicz, 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Sea Environment Proceedings Helcom 106: 144.Google Scholar
  46. Olguín, H. F., D. Boltovskoy, C. B. Lange & F. Brandini, 2006. Distribuition of spring phytoplankton (mainly diatoms) in the upper 50 m of the Southwestern Atlantic Ocean (30–61°S). Journal of Plankton Research 28: 1107–1128.CrossRefGoogle Scholar
  47. Pitcher, G. C., P. C. Brown & B. A. Michell-Innes, 1992. Spatio-temporal variability of phytoplankton in the southern Benguela upwelling system. South African Journal of Marine Science 12: 439–456.CrossRefGoogle Scholar
  48. Purcell, C. A., 1999. Caracterização quali- e quantitativa do nano- e microplâncton da região oceânica entre Ilhéus e Porto Seguro (BA). Monografia de bacharelado. Instituto de Biologia, Departamento de Biologia Marinha, Universidade Federal do Rio de Janeiro, UFRJ.Google Scholar
  49. Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Sandgre, C. D. (ed), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 388–433.Google Scholar
  50. Reynolds, C. S., 1997. Vegetation Processes in the Pelagic. A Model for Ecosystem Theory. ECI, Oldendorf.Google Scholar
  51. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24(5): 417–428.CrossRefGoogle Scholar
  52. Rossi-Wongtschowski, C. L. D. B. & L. S. P. Madureira, 2006. O Ambiente Oceanográfico da Plataforma Continental e do Talude na Região Sudeste-Sul do Brasil. Editora da Universidade de São Paulo.Google Scholar
  53. Salomão, M. S. M. B., M. M. Molisani, A. R. C. Ovalle, C. E. Rezende, L. D. Lacerda & C. E. V. Carvalho, 2001. Particulate heavy metal transport in the lower Paraíba do Sul River basin, southeastern, Brazil. Hydrological Processes 15: 587–593.CrossRefGoogle Scholar
  54. Schlitzer, R., 2011. Ocean Data View.Google Scholar
  55. Silva, L. C. F., C. A. M. Albuquerque, W. W. Cavalheiro & C. M. P. Hansen, 1984. Gabarito tentativo para as massas de água da costa sudeste brasileira. Anais Hidrográficos 51: 261–299.Google Scholar
  56. Smayda, T. J. & C. S. Reynolds, 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research 23(5): 447–461.CrossRefGoogle Scholar
  57. Sournia, A., 1982. Form and function in marine phytoplankton. Biological Reviews 57: 347–394.CrossRefGoogle Scholar
  58. Steven, D. M. & R. Glombitza, 1972. Oscillatory variation of a phytoplankton population in a tropical ocean. Nature 237: 105–107.CrossRefGoogle Scholar
  59. Suzini-Ribeiro, S. M., 1999. Biomass distribution of pico, nano, and microplankton on the continental shelf of Abrolhos, East Brazil. Archive of Fishery and Marine Research 47: 271–284.Google Scholar
  60. Tenenbaum, D. R. T., E. A. T. Gomes, & G. P. Guimarães, 2006. Microorganismos planctônicos, Pico, Nano, Micro. In Valentin, J. L. (ed), Características Hidrobiológicas da Região Central da Zona Econômica Exclusiva Brasileira (Salvador, BA, ao Cabo de São Tomé, RJ). Editora Ideal: 83–124.Google Scholar
  61. Utermöhl, H., 1958. Zur vevookommung der quantitativen phytoplanktonmethodik. Mitteilungen Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  62. Villac, M. C. & D. R. Tenenbaum, 2010. The phytoplankton of Guanabara Bay, Brazil. I. Historical account of its biodiversity. Biota Neotropica 10: 271–293.CrossRefGoogle Scholar
  63. Whitfield, M., 2001. Interactions between phytoplankton and trace metal in the ocean. Advances in Marine Biology 41: 1–128.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Gleyci A. O. Moser
    • 1
  • Robson Alves Takanohashi
    • 1
  • Mariana de Chagas Braz
    • 1
  • Domênica Teixeira de Lima
    • 1
  • Fabiana Vasconcelos Kirsten
    • 1
  • Josefa Varela Guerra
    • 1
  • Alexandre M. Fernandes
    • 1
  • Ricardo César Gonçalves Pollery
    • 2
  1. 1.Faculdade de Oceanografia (FAOC)Universidade do Estado do Rio de Janeiro (UERJ)Rio de JaneiroBrazil
  2. 2.Laboratório de BiogeoquímicaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations