Advertisement

Hydrobiologia

, Volume 727, Issue 1, pp 65–73 | Cite as

Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: microcystin-LR as a potential allelochemical

  • Jia Yang
  • Xiru Deng
  • Qiming Xian
  • Xin Qian
  • Aimin Li
Primary Research Paper

Abstract

Microcystis aeruginosa and Microcystis wesenbergii are two cyanobacteria commonly found in eutrophic shallow lakes. Previous studies reported that microcystin-producing M. aeruginosa could have an increased competitive potential on other algae and aquatic plants, and microcystin-LR (MC-LR) was regarded as an allelochemical. Based on this hypothesis, the allelopathic interaction between these two cyanobacteria was studied for the first time under laboratory conditions, and potential allelochemicals were screened. Cyanobacteria biomass and microcystin-LR (MC-LR) concentration were monitored under different culture conditions. The potential allelochemicals from M. aeruginosa were investigated by extract fractionation and GC(LC)/MS analysis. The growth of M. wesenbergii was inhibited by the addition of cell-free filtrates of M. aeruginosa whereas M. aeruginosa was promoted by the addition of cell-free filtrates of M. wesenbergii. The higher polarity the extract of M. aeruginosa is, the stronger the inhibition effect of the extract on M. wesenbergii will be. According to our results, M. aeruginosa has a significant allelopathic inhibition effect on M. wesenbergii. Allelopathic compounds from M. aeruginosa have synergistic effects on inhibition of M. wesenbergii. Besides microcystin, there may be other allelopathic compounds in M. aeruginosa.

Keywords

Allelopathic activity Cyanobacteria Mixed-culture Synergistic allelochemicals 

Notes

Acknowledgments

This study was supported by National Key basic Research Program (2008CB418003) and National Natural Science Foundation of China (50938004). The authors thank the two anonymous reviewers for their helpful comments. Many thanks are given to Dr. Karri Ramu for English editing.

References

  1. Balode, M., I. Purina, C. beechemin & S. Maestrini, 1998. Effects of nutrient enrichment on the growth rates and community structure of summer phytoplankton from the Gulf of Riga, Baltic Sea. Journal of Plankton Research 20: 2251–2272.CrossRefGoogle Scholar
  2. Bártová, K., K. Hilscherová, P. Babica & B. Maršálek, 2011. Extract of Microcystis water bloom affects cellular differentiation in filamentous cyanobacterium Trichormus variabilis (Nostocales, Cyanobacteria). Journal of Applied Phycology 23: 967–973.CrossRefGoogle Scholar
  3. B-Beres, V., I. Grigorszky, G. Vasas, G. Borics, G. Varbiro, S. A. Nagy, G. Borbely & I. Bacsi, 2012. The effects of Microcystis aeruginosa (cyanobacterium) on Cryptomonas ovata (Cryptophyta) in laboratory cultures: why these organisms do not coexist in steady-state assemblages? Hydrobiologia 691: 97–107.CrossRefGoogle Scholar
  4. Brooks, B. W., J. P. Grover & D. L. Roelke, 2011. Prymnesium parvum, an emerging threat to inland waters. Environmental Toxicology and Chemistry 30: 1955–1964.PubMedCrossRefGoogle Scholar
  5. Chen, Y. W., B. Q. Qin, K. Teubner & M. T. Dokulil, 2003. Long-term dynamics of phytoplankton assemblages: microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research 25: 445–453.CrossRefGoogle Scholar
  6. Gantar, M., J. P. Berry, S. Thomas, M. Wang, R. Perez & K. S. Rein, 2008. Allelopathic activity among Cyanobacteria and microalgae isolated from Florida freshwater habitats. FEMS Microbiology Ecology 64: 55–64.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Granéli, E., B. Edvardsen, D. L. Roelke & J. A. Hagström, 2012. The ecophysiology and bloom dynamics of Prymnesium spp. Harmful Algae 14: 260–270.CrossRefGoogle Scholar
  8. Gross, E. M., 2003. Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences 22: 313–339.CrossRefGoogle Scholar
  9. Homma, T., N. Komatsu, M. Negishi, Y. Katagami, K. Nakamura & H. D. Park, 2008. Influence of dissolved inorganic nitrogen and phosphorus concentrations on the horizontal and temporal changes of microcystis population in Lake Kitaura. In Sengupta, M., & R. Dalwani (eds), Proceedings of Taal 2007: The 12th World Lake Conference: 1423–1429.Google Scholar
  10. Imai, H., K. H. Chang, M. Kusaba & S. I. Nakano, 2009. Temperature-dependent dominance of Microcystis (Cyanophyceae) species: M. aeruginosa and M. wesenbergii. Journal of Plankton Research 31: 171–178.CrossRefGoogle Scholar
  11. Irfanullah, M. H. & B. Moss, 2005. Allelopathy of filamentous green algae. Hydrobiologia 543: 169–179.CrossRefGoogle Scholar
  12. Ishida, K. & M. Murakami, 2000. Kasumigamide, an Antialgal Peptide from the Cyanobacterium Microcystis aeruginosa. Journal of Organic Chemistry 65: 5898–5900.PubMedCrossRefGoogle Scholar
  13. Jang, M. H., K. Ha & N. Takamura, 2007. Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica). Toxicon 49: 727–733.PubMedCrossRefGoogle Scholar
  14. Keating, K. I., 1977. Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196: 885–886.PubMedCrossRefGoogle Scholar
  15. Keating, K. I., 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199: 971–973.PubMedCrossRefGoogle Scholar
  16. Leão, P. N., T. S. Vasconcelos & V. M. Vasconcelos, 2009a. Allelopathy in freshwater cyanobacteria. Critical Reviews in Microbiology 35: 271–282.PubMedCrossRefGoogle Scholar
  17. Leão, P. N., T. S. Vasconcelos & V. M. Vasconclos, 2009b. Allelopathic activity of cyanobacteria on green microalgae at low cell densities. European Journal of Phycology 44: 347–355.CrossRefGoogle Scholar
  18. Leão, P. N., A. R. Pereira, W. T. Liu, J. Ng, P. A. Pevzner, P. C. Dorrestein, G. M. König, V. M. Vasconcelos & W. H. Gerwick, 2010. Synergistic allelochemicals from a freshwater cyanobacterium. PNAS 107: 11183–11188.PubMedCrossRefGoogle Scholar
  19. LeBlanc, S., F. R. Pick & R. Aranda-Rodriguez, 2005. Allelopathic effects of the toxic cyanobacterium Microcystis aeruginosa on duckweed, Lemna gibba L. Environmental Toxicology 20: 67–73.PubMedCrossRefGoogle Scholar
  20. Leflaive, J. & L. ten-Hage, 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biology 52: 199–214.CrossRefGoogle Scholar
  21. Legrand, C., K. Rengefors, G. O. Fistarol & E. Granéli, 2003. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia 42: 406–419.CrossRefGoogle Scholar
  22. Li, H. H., M. Inoue, H. Nishimura, J. Mizutani & E. Tsuzuki, 1993. Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. Journal of Chemical Ecology 19: 1775–1787.PubMedCrossRefGoogle Scholar
  23. Mohamed, Z. A., 2002. Allelopathic activity of Spirogyra sp.: stimulating bloom formation and toxin production by Oscillatoria agardhii in some irrigation canals, Egypt. Journal of Plankton Research 24: 137–141.CrossRefGoogle Scholar
  24. Park, H. D., M. F. Watanabe, K. J. Harada, M. Suzuki, H. Hayashi & T. Okino, 1993. Seasonal variations of microcystis species and toxic heptapeptide microcystins in Lake Suwa. Environmental Toxicology and Water Quality 8: 425–435.CrossRefGoogle Scholar
  25. Pflugmacher, S., 2002. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environmental Toxicology 17: 407–413.PubMedCrossRefGoogle Scholar
  26. Pflugmacher, S., M. Aulhorn & B. Grimm, 2007. Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defence systems of different spinach variants. New Phytology 175: 482–489.CrossRefGoogle Scholar
  27. Prince, E. K., T. L. Myers & J. Kubanek, 2008. Effects of harmful algal blooms on competitors: allelopathic mechanisms of the red tide dinoflagellate “Karenia Brevis”. Limnology and Oceanography 53: 531–541.CrossRefGoogle Scholar
  28. Rice, E. L., 1984. Allelopathy, 2nd ed. Academic Press, Orlando.Google Scholar
  29. Romanowska-Duda, Z. & M. Tarczynska, 2002. The influence of microcystin-LR and hepatotoxic cyanobacterial extract on the water plant Spirodela oligorrhiza. Environmental Toxicology 17: 434–440.PubMedCrossRefGoogle Scholar
  30. Singh, D. P., M. B. Tyagi, A. Kumar, J. K. Thakur & A. Kumar, 2001. Antialgal activity of a hepatotoxin-producing cyanobacterium, Microcystis aeruginosa. World Journal of Microbiology and Biotechnology 17: 15–22.CrossRefGoogle Scholar
  31. Stanier, R. Y., R. Kunisawa, M. Mandel & G. Cohen-Bazire, 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews 35: 171–205.PubMedCentralPubMedGoogle Scholar
  32. Suikkanen, S., G. O. Fistarol & E. Granéli, 2005. Effects of cyanobacterial allelochemicals on a natural plankton community. Marine Ecology Progress Series 287: 1–9.CrossRefGoogle Scholar
  33. Sukenik, A., R. Eshkol, A. Livne, O. Hadas, M. Rom, D. Tchernov, A. Vardi & A. Kaplan, 2002. Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnology and Oceanography 47: 1656–1663.CrossRefGoogle Scholar
  34. Walsh, K., G. J. Jones & R. H. Dunstan, 1998. Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Phytochemistry 49: 1227–1239.PubMedCrossRefGoogle Scholar
  35. Willis, R. J., 1985. The historical bases of the concept of Allelopathy. Journal of the History of Biology 18: 71–102.CrossRefGoogle Scholar
  36. Yamamoto, Y. & H. Nakahara, 2009. Seasonal variations in the morphology of bloom-forming cyanobacteria in a eutrophic pond. Limnology 10: 185–193.CrossRefGoogle Scholar
  37. Yamasaki, S., 1993. Probable effects of algal bloom on the growth of Phragmites australis (Cav.) Trin. ex Steud. Journal of Plant Research 106: 113–120.CrossRefGoogle Scholar
  38. Yang, J., J. J. Wang, Q. M. Xian & X. Qian, 2012. Allelopathic effects of Microcystis aeruginosa on Microcystis wesenbergii. Chinese Journal of Ecology 31: 131–137.Google Scholar
  39. Yin, J., J. Xie, W. D. Yang, H. Y. Li & J. S. Liu, 2010. Effect of Alexandrium tamarense on three bloom-forming algae. Chinese Journal of Oceanology and Limnology 28: 940–944.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jia Yang
    • 1
  • Xiru Deng
    • 1
  • Qiming Xian
    • 1
  • Xin Qian
    • 1
  • Aimin Li
    • 1
  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingChina

Personalised recommendations