Advertisement

Hydrobiologia

, Volume 737, Issue 1, pp 87–95 | Cite as

Development of bog-like vegetation during terrestrialization of polyhumic lakes in north-eastern Poland is not accompanied by ecosystem ombrotrophication

  • Paweł Pawlikowski
  • Ewelina Rutkowska
  • Stanisław Kłosowski
  • Ewa Jabłońska
  • Danuta Drzymulska
PLANTS IN HYDROSYSTEMS

Abstract

The aim of the present study was to use the analysis of surface water chemistry to understand vegetation succession pathways in terrestrializing polyhumic lakes. We hypothesized that Sphagnum mire development was accompanied by a decrease in the mineral content in water. A total of 111 vegetation plots along 23 transects were analysed in 11 lakes and adjacent peat lands in the Wigry National Park (NE Poland). The vegetation of the lake-mire systems forms distinct zones: (1) nymphaeid-, bladderwort- and bryophyte-dominated aquatic vegetation; (2) sedge-dominated edge of the Sphagnumcarpet; (3) quaking, extremely poor fen with various Cyperaceae; (4) non-quaking, Eriophorum vaginatum-dominated bog-like vegetation and (5) pine woodland. Surface water corrected conductivity (ECcorr.), pH, COD-KMnO4 and Ca2+, Mg2+, Fetot. and SiO2 were measured along the transects. The environmental gradients best explaining the observed pattern were pH (with the highest values in the lake and the lowest in the bog-like vegetation) and COD-KMnO4 (showing an inverse direction). At least in some Sphagnum-mires conditions were more minerotrophic than in the lakes. The process of humic lake overgrowing by Sphagnum-mires in NE Poland results in pine woodlands on mineralised peat. The climate conditions in NE Poland, combined with evapotranspiration accelerated by encroaching trees, do not seem to support the development of ombrotrophic bogs.

Keywords

Polyhumic lake Dystrophic lake Lake overgrowing Poor fen Bog Surface water chemistry 

References

  1. Bajkiewicz-Grabowska, E., 1997. Charakterystyka fizycznogeograficzna zlewni eksperymentalnej Wigierskiej Stacji Bazowej. In Krzysztofiak, L. (ed.), Zintegrowany Monitoring Środowiska Przyrodniczego, Stacja Bazowa Wigry (Wigierski Park Narodowy). Państwowy Inspektor Ochrony Środowiska, Biblioteka Monitoringu Środowiska, Warszawa: 19–28.Google Scholar
  2. Braun-Blanquet, J., 1951. Pflanzensociologie. Springer, Wien.Google Scholar
  3. Catling, P. M., B. Freedman, C. Stewart, J. J. Kerekes & L. P. Lefkovitch, 1985. Aquatic plants of acid lakes in Kejimkujik National Park, Nova Scotia; floristic composition and relation to water chemistry. Canadian Journal of Botany 64: 724–729.CrossRefGoogle Scholar
  4. Charman, D. J., A. D. Brown, D. Hendon & E. Karofeld, 2004. Testing the relationship between Holocene peatland palaeoclimate reconstructions and instrumental data at two European sites. Quaternary Science Reviews 23: 137–143.CrossRefGoogle Scholar
  5. Chmiel, S., 2009. Hydrochemical evaluation of dystrophy of the water bodies in the Łęczna and Włodawa area in the years 2000–2008. Limnological Review 9: 153–158.Google Scholar
  6. Clymo, R. S., 1963. Ion exchange in Sphagnum and its relation to bog ecology. Annals of Botany 27: 309–324.Google Scholar
  7. Damman, A. W. H., 1995. Major mire vegetation units in relation to the concepts of ombrotrophy and minerotrophy: a worldwide perspective. Gunneria 70: 23–34.Google Scholar
  8. Dítě, D., J. Navrátilova, M. Hájek, M. Valachovič & D. Pukajová, 2006. Habitat variability and classification of Utricularia-communities: comparison of peat depressions in Slovakia and Třeboň basin. Preslia 7: 331–343.Google Scholar
  9. Drzymulska, D. & P. Zieliński, 2013. Developmental changes in the historical and present-day trophic status of brown water lakes. Are humic water bodies a uniform aquatic ecosystem? Wetlands 33(5): 909–919.CrossRefGoogle Scholar
  10. Drzymulska, D., S. Kłosowski, P. Pawlikowski, P. Zieliński & E. Jabłońska, 2013. The historical development of vegetation of foreshore mires beside humic lakes; different successional pathways under various environmental conditions. Hydrobiologia 703(1): 15–31.CrossRefGoogle Scholar
  11. Du Rietz, G. E., 1954. Die Mineralbodenwasserzeigergrenze als Grundlage einer natürlichen Zweigliederung der Nord- und Mitteleuropäischen Moore. Vegetatio 5–6: 571–585.CrossRefGoogle Scholar
  12. Ellenberg, H., 1986. Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht, 4th ed. E. Ulmer Verlag, Stuttgart.Google Scholar
  13. Fay, E. & C. Lavoie, 2009. The impact of birch seedlings on evapotranspiration from a mined peatland: an experimental study in southern Quebec, Canada. Mires and Peat 5: 1–7.Google Scholar
  14. Gąbka, M. & P. Owsianny, 2006. Shallow humic lakes of the Wielkopolska region – relation between dystrophy and eutrophy in lake ecosystems. Limnological Review 6: 95–102.Google Scholar
  15. Gąbka, M., P. M. Owsianny & T. Sobczyński, 2004. Acidic lakes in the Wielkopolska region – physico-chemical properties of water, bottom sediments and the aquatic micro- and macrovegetation. Limnological Review 4: 81–88.Google Scholar
  16. Glaser, P. H., D. I. Siegel, E. A. Romanowicz & Y. P. Shen, 1997. Regional linkages between raised bogs and the climate, groundwater, and landscape of north-western Minnesota. Journal of Ecology 85: 3–16.CrossRefGoogle Scholar
  17. Górniak, A., 1996. Substancje humusowe i ich rola w funkcjonowaniu ekosystemów słodkowodnych. Disserationes Universitatis Varsoviensis 448. Uniwersytet Warszawski, Filia w Białymstoku, Białystok.Google Scholar
  18. Górniak, A. (ed.), 2006. Jeziora Wigierskiego Parku Narodowego. Wydawnictwo Uniwersytetu w Białymstoku, Białystok.Google Scholar
  19. Górniak, A., E. Jekatieryńczuk-Rudczyk & P. Dobrzyń, 1999. Hydrochemistry of three dystrophic lakes in northeaster Poland. Acta Hydrochimica et Hydrobiologica 27: 12–18.CrossRefGoogle Scholar
  20. Granlund, E., 1932. De svenska högmossarnas geologi. Sveriges Geologiska Undersökning C 373: 1–193.Google Scholar
  21. Hałas, S., M. Słowiński & M. Lamentowicz, 2008. Relacje między czynnikami meteorologicznymi i hydrologią małego torfowiska mszarnego na Pomorzu. Studia Limnologica et Telmatologica 2: 15–26.Google Scholar
  22. Hansen, K., 1962. The dystrophie lake type. Hydrobiologia 19: 183–191.CrossRefGoogle Scholar
  23. Hill, M. O., 1979. TWINSPAN: a FORTRAN Program for Arranging Multivariate Data in an Ordered Two-Way Table by Classification of the Individuals and Attributes. Cornel University, Ithaca, New York, Ecology and Systematics.Google Scholar
  24. Keskitalo, J., K. Salonen & A.-L. Holopainen, 1998. Long-term fluctuations in environmental conditions, plankton and macrophytes in a humic lake, Valkea-Kotinen. Boreal Environment Research 3: 251–262.Google Scholar
  25. Klavins, M., V. Rodionov & I. Druvietis, 2003. Aquatic chemistry and humic substances in bog lakes in Latvia. Boreal Environment Research 8: 113–123.Google Scholar
  26. Kłosowski, S., 2002. Temporal and spatial variation of habitat conditions in the zonation of vegetation in the late stages of lake overgrowth. Acta Societatis Botanicorum Poloniae 71: 329–337.CrossRefGoogle Scholar
  27. Luoto, T. P., L. Nevalainen, T. Kauppila, M. Tammelin & K. Sarmaja-Korjonen, 2012. Diatom-inferred total phosphorus from dystrophic Lake Arapisto, Finland, in relation to Holocene paleoclimate. Quaternary Research 78: 248–255.CrossRefGoogle Scholar
  28. Malmer, N., 1986. Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany 64: 375–383.CrossRefGoogle Scholar
  29. Malmer, N., G. Svensson & B. Wallén, 2011. Carbon and mass balance in a South Swedish ombrotrophic bog: processes and variation during recent centuries. Mires and Peat 8: 1–16.Google Scholar
  30. Marek, S., 1992. Transformation of lakes in mires. Acta Societatis Botanicorum Poloniae 61: 103–113.CrossRefGoogle Scholar
  31. Milius, A. & H. Starast, 1997. A three-parameter trophic state index for small lakes. Proceedings of the Estonian Academy of Sciences, Biology and Ecology 46: 27–39.Google Scholar
  32. Mucina, L., 1997. Conspectus of classes of European vegetation. Folia Geobotanica et Phytotaxonomica 32: 117–172.CrossRefGoogle Scholar
  33. Naumann, E., 1931. Limnologische Terminologie. Handbuch der biologischen Arbaitsmethoden, Sect. IX, Part. 8. Urban und Schwarzenberg, Berlin.Google Scholar
  34. Owsianny, P. M. & M. Gąbka, 2006. Spatial heterogeneity of biotic and abiotic habitat conditions of the lake-bog ecosystem Kuźniczek (NW Poland). Limnological Review 6: 223–231.Google Scholar
  35. Price, J. S., 1996. Hydrology and microclimate of a partly restored cutover bog, Quebec. Hydrological Processes 10: 1263–1272.CrossRefGoogle Scholar
  36. Proctor, M. C. F., 1992. Regional and local variation in the chemical composition of ombrogenous mire waters in Britain and Ireland. Journal of Ecology 80: 719–736.Google Scholar
  37. Proctor, M. C. F., 2003. Malham Tarn Moss – the surface-water chemistry of an ombrotrophic bog. Field Studies 10: 553–578.Google Scholar
  38. Roleček, J., 2005. Vegetation types of dry-mesic oak forests in Slovakia. Preslia 77: 241–267.Google Scholar
  39. Roleček, J., L. Tichy, D. Zeleny & M. Chytry, 2009. Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. Journal of Vegetation Science 20: 596–602.CrossRefGoogle Scholar
  40. Rydin, H. & J. Jeglum, 2006. The biology of peatlands. Oxford University Press, New York.CrossRefGoogle Scholar
  41. Sachse, A., D. Babenzien, G. Ginzel, J. Gelbrecht & C. E. W. Steinberg, 2001. Characterization of dissolved organic carbon (DOC) in a dystrophic lake and an adjacent fen. Biogeochemistry 54: 279–296.CrossRefGoogle Scholar
  42. Schoning, K., D. J. Charman & S. Wastegard, 2005. Reconstructed water tables from two ombrotrophic mires in eastern central Sweden compared with instrumental meteorological data. The Holocene 15: 111–118.CrossRefGoogle Scholar
  43. Sjörs, H., 1950. On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2: 241–258.CrossRefGoogle Scholar
  44. Sobotka, D., 1967. Roślinność strefy zarastania bezodpływowych jezior Suwalszczyzny. Monographiae Botanicae 2: 175–258.Google Scholar
  45. Sottocornola, M. & G. Kiely, 2010. Energy fluxes and evaporation mechanisms in an Atlantic blanket bog in southwestern Ireland. Water Resources Research 46. doi: 10.1029/2010WR009078.
  46. Stangenberg, M., 1936. Szkic limnologiczny na tle stosunków hydrochemicznych Pojezierza Suwalskiego. Instytut Badawczy Leśnictwa, Rozprawy i Sprawozdania A 19: 7–85.Google Scholar
  47. Succow, M. & H. Joosten, (eds) 2001. Landschaftsökologische Moorkunde. 2. völl. bearb. Aufl. E. Schweizerbart’sche Verlag, Stuttgart.Google Scholar
  48. Tahvanainen, T., T. Sallantaus, R. Heikkilä & K. Tolonen, 2002. Spatial variation of mire surface water chemistry and vegetation in northeastern Finland. Annales Botanici Fennici 39: 235–251.Google Scholar
  49. Taipale, S., P. Kankaala & R. I. Jones, 2007. Contributions of different organic carbon sources to Daphnia in the pelagic foodweb of a small polyhumic lake: results from mesocosm DI13C-additions. Ecosystems 10: 757–772.CrossRefGoogle Scholar
  50. Ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO reference manual and user’s guide to Canoco for Windows, Software for canonical community ordination (version 4.). Center for Biometry Wageningen (Wageningen, NL) and Microcomputer Power (Ithaca, NY, USA).Google Scholar
  51. Thienemann, A., 1922. Biologische Seetypen und die Gründung einer hydrobiologischen Anstalt am Bodensee. Archiv für Hydrobiologie 13: 347–370.Google Scholar
  52. Tichý, L., 2002. JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451–453.CrossRefGoogle Scholar
  53. Vitt, D. H., 2000. Peatlands: ecosystems dominated by bryophytes. In Shaw, A. J. & B. Goffinet (eds), Bryophyte biology. University Press, Cambridge: 312–343.CrossRefGoogle Scholar
  54. Wheeler, B. D. & C. F. Proctor, 2000. Ecological gradients, subdivisions and terminology of north-west European mires. Journal of Ecology 88: 187–203.CrossRefGoogle Scholar
  55. Williamson, C. E., D. P. Morris, M. L. Pace & O. G. Olson, 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnology and Oceanography 44: 795–803.CrossRefGoogle Scholar
  56. Wiszniewski, J., 1953. Uwagi w sprawie typologii jezior polskich. Polskie Archiwum Hydrobiologii 1: 11–23.Google Scholar
  57. Wojciechowski, I., 1999. Warunki funkcjonowania ekosystemów torfowiskowych i wodno-torfowiskowych w Polsce. In Radwan, S. & R. Kornijów (eds), Problemy aktywnej ochrony ekosystemów wodnych i torfowiskowych w polskich parkach narodowych. Wydawnictwo UMCS, Lublin: 57–63.Google Scholar
  58. Zak, D., J. Gelbrecht & C. E. W. Steinberg, 2004. Phosphorus retention at the redox interface of peatlands adjacent to surface waters in northeast Germany. Biogeochemistry 70: 357–368.CrossRefGoogle Scholar
  59. Zar, H. J., 1999. Biostatistical analysis, 4th ed. Prentice-Hall, Upper Saddle River, New Jersey.Google Scholar
  60. Zieliński, P., J. Ejsmont-Karabin, M. Grabowska & M. Karpowicz, 2011. Ecological status of shallow Lake Gorbacz (NE Poland) in its final stage before drying up. Oceanological et Hydrobiological Studies 40: 1–12.CrossRefGoogle Scholar
  61. Żurek, S., K. Bińka & D. Drzymulska, 2009. Torfowisko Sucharu Dembowskich. Prace Komisji Paleogeografii Czwartorzędu Polskiej Akademii Umiejętności 7: 99–106.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Paweł Pawlikowski
    • 1
  • Ewelina Rutkowska
    • 1
  • Stanisław Kłosowski
    • 2
  • Ewa Jabłońska
    • 1
  • Danuta Drzymulska
    • 3
  1. 1.Department of Plant Ecology and Environmental Conservation, Institute of Botany, Faculty of BiologyUniversity of Warsaw, Biological and Chemical Research CentreWarsawPoland
  2. 2.Department of Environmental Protection and ModellingThe Jan Kochanowski UniversityKielcePoland
  3. 3.Department of Botany, Institute of BiologyUniversity of BiałystokBiałystokPoland

Personalised recommendations