, Volume 725, Issue 1, pp 165–188 | Cite as

Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans

  • S. H. ChengEmail author
  • F. E. Anderson
  • A. Bergman
  • G. N. Mahardika
  • Z. A. Muchlisin
  • B. T. Dang
  • H. P. Calumpong
  • K. S. Mohamed
  • G. Sasikumar
  • V. Venkatesan
  • P. H. Barber


The big-fin reef squid, Sepioteuthis cf. lessoniana (Lesson 1930), is an important commodity species within artisanal and near-shore fisheries in the Indian and Indo-Pacific regions. While there has been some genetic and physical evidence that supports the existence of a species complex within S. cf. lessoniana, these studies have been extremely limited in scope geographically. To clarify the extent of cryptic diversity within S. cf. lessoniana, this study examines phylogenetic relationships using mitochondrial genes (cytochrome oxidase c, 16s ribosomal RNA) and nuclear genes (rhodopsin, octopine dehydrogenase) from nearly 400 individuals sampled from throughout the Indian, Indo-Pacific, and Pacific Ocean portions of the range of this species. Phylogenetic analyses using maximum likelihood methods and Bayesian inference identified three distinct lineages with no clear geographic delineations or morphological discriminations. Phylogeographic structure analysis showed high levels of genetic connectivity in the most widespread lineage, lineage C and low levels of connectivity in lineage B. This study provides significant phylogenetic evidence for cryptic lineages within this complex and confirms that cryptic lineages of S. cf. lessoniana occur in sympatry at both small and large spatial scales. Furthermore, it suggests that two closely related co-occurring cryptic lineages have pronounced differences in population structure, implying that underlying differences in ecology and/or life history may facilitate co-occurrence. Further studies are needed to assess the range and extent of cryptic speciation throughout the distribution of this complex. This information is extremely useful as a starting point for future studies exploring the evolution of diversity within Sepioteuthis and can be used to guide fisheries management efforts.


Cryptic diversity Marine Myopsidae Sepioteuthis Squids Phylogenetics 



We would like to thank M. J. Aidia, I. Zulkarnaini, A. Muhadjier, H. Nuetzel, S. Simmonds, A. Wahyu, D. Willette, M. Weber, and R. Rachmawati for assistance in sampling collection and field expeditions, K. Carpenter (ODU) for funding and facilitation of sample collection. We would also like to thank U.S. National Science Foundation Partnerships in International Research and Education (NSF-PIRE) Grants 1036516 (to P.H. Barber), the Explorer’s Club research grants, the Lemelson Foundation and the UCLA Center for Southeast Asian Studies research grants (to S.H. Cheng), and the Southern Illinois University REACH award (to A. Bergman) for funding and support.


  1. Adam, W., 1939. Cephalopoda part I. Le genre Sepioteuthis Blainville, 1824. Siboga-Expeditie, Monographie LVa: 1–33.Google Scholar
  2. Agnew, D. J., S. L. Hill, J. R. Beddington, L. V. Purchase & R. C. Wakeford, 2005. Sustainability and management of southwest Atlantic squid fisheries. Bulletin of Marine Science 76: 579–593.Google Scholar
  3. Allcock, A. L., I. Barratt, M. Eleaume, K. Linse, M. D. Norman, P. J. Smith, D. Steinke, D. W. Stevens & J. M. Strugnell, 2011. Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the CO1 barcode of life. Deep Sea Research II 58: 242–249.CrossRefGoogle Scholar
  4. Allen, G. R., 2008. Conservation hotspots and biodiversity and endemism for Indo-Pacific coral reef fishes. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 541–556.CrossRefGoogle Scholar
  5. Allen, G. R. & T. B. Werner, 2002. Coral reef fish assessment in the “Coral Triangle” of southeastern Asia. Environmental Biology of Fishes 65: 209–214.CrossRefGoogle Scholar
  6. Anderson, F. E., 2000. Phylogeny and historical biogeography of the loliginid squids (Mollusca: Cephalopoda) based on mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution 15: 191–214.PubMedCrossRefGoogle Scholar
  7. Anderson, F. E., R. Engelke, K. Jarrett, T. Valinassab, K. S. Mohamed, P. K. Asokan, P. U. Zacharia, P. Nootmorn, C. Chotiyaputta & M. Dunning, 2011. Phylogeny of the Sepia pharaonis species complex (Cephalopoda: Sepiida) based on analyses of mitochondrial and nuclear DNA sequence data. Journal of Molluscan Studies 77: 65–75.CrossRefGoogle Scholar
  8. Anker, A., 2010. New findings of rare or little-known alpheid shrimp genera (Crustacea. Decapoda) in Moorea, French Polynesia. Zootaxa 2403: 23–41.Google Scholar
  9. Avise, J. C., 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, MA. 447.Google Scholar
  10. Barber, P. H. & S. L. Boyce, 2006. Estimating diversity of Indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae. Proceedings of the Royal Society B 273: 2053–2061.PubMedCrossRefGoogle Scholar
  11. Barber, P. H., M. V. Erdmann & S. Palumbi, 2006. Comparative phylogeography of the three codistributed stomatopods: origins and timing of regional lineage diversification in the Coral Triangle. Evolution 60: 1825–1839.PubMedGoogle Scholar
  12. Barber, P. H., S. H. Cheng, M. V. Erdmann, K. Tenggardjaja & Ambariyanto, 2011. Evolution and conservation of marine biodiversity in the Coral Triangle: insights from stomatopod Crustacea. In Held, C., S. Koenemann & C. D. Schubart (eds), Phylogeography and Population Genetics of Crustacea. Crustacean Issues. CRC Press, Boca Raton.Google Scholar
  13. Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. K. Ingram & I. Das, 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22: 148–155.PubMedCrossRefGoogle Scholar
  14. Boyle, P. & S. V. Boletzky, 1996. Cephalopod populations: definitions and dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences 351: 985–1002.CrossRefGoogle Scholar
  15. Briggs, J. C., 1999. Coincident biogeographic patterns: Indo-West Pacific Ocean. Evolution 53: 326–335.CrossRefGoogle Scholar
  16. Carpenter, K. E., P. H. Barber, E. D. Crandall, M. C. A. Ablan-Lagman, Ambariyanto, G. N. Mahardika, B. M. Manjaji-Matsumoto, M. A. Juinio-Menez, M. D. Santos, C. J. Starger & A. H. A. Toha, 2011. Comparative phylogeography of the Coral Triangle and implications for marine management. Journal of Marine Biology 2011: 1–14.CrossRefGoogle Scholar
  17. Chikuni, S., 1983. Cephalopod resources in the Indo-Pacific region. In Caddy, J. F. (ed.), Advances in Assessment of World Cephalopod Resources. FAO Fisheries Technical Paper 231: 264–305.Google Scholar
  18. Choe, S., 1966. On the eggs, rearing, habits of the fry, and growth of some Cephalopoda. Bulletin of Marine Science 16: 330–348.Google Scholar
  19. Chotiyaputta, C., 1993. Cephalopod resources of Thailand. In Okutauni, T., R. O’Dor & T. Kubodera (eds), Recent Advances in Fisheries Biology. Tokai University Press, Tokyo: 71–80.Google Scholar
  20. Colborn, J., R. E. Crabtree, J. B. Shaklee, E. Pfeiler & B. W. Bowen, 2001. The evolutionary enigma of bonefishes (Albula spp.): cryptic species and ancient separations in a globally distributed shorefish. Evolution 55: 807–820.PubMedCrossRefGoogle Scholar
  21. Conservation International, 2012. Coral Triangle Initiative Map. Accessed November 3, 2012.
  22. Crandall, E. D., M. A. Frey, P. K. Grosberg & P. H. Barber, 2008. Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods. Molecular Ecology 17: 611–626.PubMedCrossRefGoogle Scholar
  23. Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.PubMedCrossRefGoogle Scholar
  24. DeBoer, T. S., M. D. Subia, M. V. Erdmann, K. Kovitvongsa & P. H. Barber, 2008. Phylogeography and limited genetic connectivity in the endangered boring giant clam across the Coral Triangle. Conservation Biology 22: 1255–1266.PubMedCrossRefGoogle Scholar
  25. Dobzhansky, T., 1970. Genetics of the Evolutionary Process. Columbia University Press, New York.Google Scholar
  26. Donoghue, M. J., 1985. A critique of the biological species concept and recommendations for a phylogenetic alternative. The Bryologist 88: 172–181.CrossRefGoogle Scholar
  27. Drew, J., G. R. Allen, L. Kaufman & P. H. Barber, 2008. Endemism and regional color and genetic differences in five putatively cosmopolitan reef fishes. Conservation Biology 22: 965–975.PubMedCrossRefGoogle Scholar
  28. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.PubMedCrossRefGoogle Scholar
  29. FAO, 2009. FAO Yearbook. Fishery and Aquaculture Statistics. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  30. Fauvelot, C. & P. Borsa, 2011. Patterns of genetic isolation in a widely distributed pelagic fish, the narrow-banded Spanish mackerel (Scomberomorus commerson). Biological Journal of the Linnean Society 104: 886–902.CrossRefGoogle Scholar
  31. Fenchel, T., 2005. Cosmopolitan microbes and their “cryptic” species. Aquatic Microbial Ecology 41: 49–54.CrossRefGoogle Scholar
  32. Fields, W.G., 1965. The structure, development, food relations, reproduction, and life history of the squid Loligo opalescen Berry. California Department of Fish and Game, Fisheries Bulletin 131: 108.Google Scholar
  33. Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.PubMedGoogle Scholar
  34. Forsythe, J. W., L. S. Walsh, P. E. Turk & P. G. Lee, 2001. Impact of temperature on juvenile growth and age at first egg-laying of the Pacific reef squid Sepioteuthis lessoniana reared in captivity. Marine Biology 138: 103–112.CrossRefGoogle Scholar
  35. Gaither, M. R., R. J. Toonen, D. R. Robertson, D. Planes & B. W. Bowen, 2009. Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). Journal of Biogeography 2009: 1–15.Google Scholar
  36. Gaither, M. R., B. W. Bowen, T. Bordenave, L. A. Rocha, S. J. Newman, J. A. Gomez, L. van Herwerden & M. T. Craig, 2011. Phylogeography of the reef fish Cephalopholis argus (Epinephelidae) indicates Pleistocene isolation across the Indo-Pacific barrier with contemporary overlap in the Coral Triangle. BMC Evolutionary Biology 11: 189–204.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Godfrey, J. S., 1996. The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: a review. Journal of Geophysical Research 101: 12217–12237.CrossRefGoogle Scholar
  38. Gordon, A. L. & R. A. Fine, 1996. Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature 379: 146–149.CrossRefGoogle Scholar
  39. Guindon, S. & O. Gascuel, 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52: 696–704.PubMedCrossRefGoogle Scholar
  40. Hebert, P. D. N., A. Cywinska, S. L. Ball & J. R. DeWaard, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society London B 270: 313–321.CrossRefGoogle Scholar
  41. Heled, J. & A. J. Drummond, 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570–580.PubMedCrossRefGoogle Scholar
  42. Iwata, Y., P. Show, E. Fujiwara, K. Shiba, Y. Kakiuchi & N. Hirohashi, 2010. Postcopulatory sexual selection drives intra-specific sperm dimorphism. Unpublished. GenBank Direct Submission. Accessed September 1, 2012.Google Scholar
  43. Izuka, T., S. Segawa, T. Okutani & K. Numachi, 1994. Evidence on the existence of three species in the oval squid Sepioteuthis lessoniana complex in Ishigaka Island, Okinawa, Southwestern Japan, by isozyme analysis. The Japanese Journal of Malacology Venus 53: 217–228.Google Scholar
  44. Izuka, T., S. Segawa & T. Okutani, 1996a. Biochemical study of the population heterogeneity and distribution of the oval squid Sepioteuthis lessoniana complex in southwestern Japan. American Malacological Bulletin 12: 129–135.Google Scholar
  45. Izuka, T., S. Segawa & T. Okutani, 1996b. Identification of three species in oval squid, Sepioteuthis lessoniana complex by chromatophore arrangements on the funnel. The Japanese Journal of Malacology Venus 55: 139–142.Google Scholar
  46. Jackson, G. D. & M. N. Moltschaniwsky, 2002. Spatial and temporal variation in growth rates and maturity in the Indo-Pacific squid Sepioteuthis lessoniana (Cephalopoda: Loliginidae). Marine Biology 140: 747–754.CrossRefGoogle Scholar
  47. Jereb, P. & C. F. E. Roper, 2006. Cephalopods of the Indian Ocean. A review. Part I. Inshore squids (Loliginidae) collected during the International Indian Ocean Expedition. Proceedings of the Biological Society of Washington 119(1): 91–136.CrossRefGoogle Scholar
  48. Jereb, P. & C. F. E. Roper, 2010. Cephalopods of the World: An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date. Volume 2. Myopsid and Oegopsid Squids. FAO Species Catalogue for Fishery Purposes. No. 4, Vol. 2. Rome.Google Scholar
  49. Jivaluk, J., J. Nabhitabhata, A. Nateewathana & P. Wtprasit, 2005. Description of the Thai type of bigfin reef squid, Sepioteuthis lessoniana, hatchling with note on comparison to Japanese types. Phuket Marine Biological Center Research Bulletin 66: 117–126.Google Scholar
  50. Kessing, B., H. Croom, A. Martin, C. McIntosh, W. O. McMillan & S. Palumbi, 1989. A Simple Fool’s Guide to PCR. Department of Zoology, University of Hawaii, Honolulu.Google Scholar
  51. Kier, W. M., 1996. Muscle development in squid: ultrastructural differentiation of a specialized muscle fiber type. Journal of Morphology 229: 271–288.CrossRefGoogle Scholar
  52. Knowlton, N., 1993. Sibling species in the sea. Annual Review of Ecology and Systematics 24: 189–216.CrossRefGoogle Scholar
  53. Knowlton, N., 2000. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420: 73–90.CrossRefGoogle Scholar
  54. Knowlton, N., E. Weil, L. A. Weigt & H. M. Guzman, 1992. Sibling species in Montastraea annularis, coral bleaching and the coral climate record. Science 255: 330–333.PubMedCrossRefGoogle Scholar
  55. Leaché, A. D. & M. K. Fujita, 2010. Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proceedings of the Royal Society B 277: 3071–3077.PubMedCrossRefGoogle Scholar
  56. Lee, P. G., P. E. Turk, W. T. Yang & R. T. Hanlon, 1994. Biological characteristics and biomedical applications of the squid Sepioteuthis lessoniana cultured through multiple generations. The Biological Bulletin 186: 328–341.PubMedCrossRefGoogle Scholar
  57. Lefkaditou, E., M. Corsini-Foka & G. Kondilatos, 2009. Description of the first Lessepsian squid migrant, Sepioteuthis lessoniana (CEPHALOPODA: Loliginidae), the Aegean Sea (Eastern Mediterranean). Mediterranean Marine Science 10: 87–97.CrossRefGoogle Scholar
  58. Leray, M., R. Beldade, S. J. Holbrook, R. J. Schmitt, S. Planes & G. Bernardi, 2010. Allopatric divergence and speciation in coral reef fish: the three-spot dascyllus, Dascyllus trimaculatus, species complex. Evolution 64: 1218–1230.PubMedGoogle Scholar
  59. Lindgren, A. R., 2010. Molecular inference of phylogenetic relationships among Decapodiformes (Mollusca: Cephalopoda) with special focus on the squid Order Oegopsida. Molecular Phylogenetics and Evolution 56: 77–90.PubMedCrossRefGoogle Scholar
  60. Maddison, W. P., 1997. Gene trees in species trees. Systematic Biology 46: 523–536.CrossRefGoogle Scholar
  61. Mayr, E., 1942. Systematics and the Origin of Species. Columbia University Press, New York.Google Scholar
  62. Mienis, H. K., 2004. New data concerning the presence of Lessepsian and other Indo-Pacific migrants among the molluscs in the Mediterranean Sea with emphasis on the situation in Israel. Turkish Journal of Aquatic Life 2: 117–131.Google Scholar
  63. Miller, M. A., M. T. Holder, R. Vos, P. E. Midford, T. Liebowitz, L. Chan, P. Hoover & T. Warnow, 2010. The CIPRES Portals. CIPRES. 2009-08-04. Accessed August 4, 2009 (Archived by WebCite(r) at
  64. Nateewathana, A., A. Munprasit & P. Dithachey, 2000. Systematics and distribution of oceanic cephalopods in the South China Sea, Area 3: Western Philippines. In Proceedings of the Third Technical Seminar on Marine Fishery Resources Survey in the South China Sea, Area 3: Western Philippines, 13–15 July 1999, Bangkok, Thailand, Vol. 41: 76–100.Google Scholar
  65. Natsukari, Y., Y. Nishiyama & Y. Nakanishi, 1986. A preliminary study on the isozymes of the loliginid squid, Photololigo edulis (Hoyle, 12885). Report on Cooperative Study on Photololigo edulis in Southwestern Japan Sea: 145–151.Google Scholar
  66. Nichols, R., 2001. Gene trees and species trees are not the same. Trends in Ecology and Evolution 16: 358–364.PubMedCrossRefGoogle Scholar
  67. Norman, M. D. & C. C. Lu, 2000. Preliminary checklist of the cephalopods of the South China Sea. The Raffles Bulletin of Zoology Supplement 8: 539–567.Google Scholar
  68. Norman, M. D. & M. J. Sweeney, 1997. The shallow-water octopuses (Cephalopoda: Octopodidae) of the Philippines. Invertebrate Taxonomy 11: 89–140.CrossRefGoogle Scholar
  69. Nuryanto, A. & M. Kochzius, 2009. Highly restricted gene flow and deep evolutionary lineages in the giant clam Tridacna maxima. Coral Reefs 28: 607–619.CrossRefGoogle Scholar
  70. O’Dor, R. K., S. Adamo, J. P. Aitken, Y. Andrade, J. Finn, R. T. Hanlon & G. D. Jackson, 2002. Currents as environmental constraints on the behavior, energetics and distribution of squid and cuttlefish. Bulletin of Marine Science 71: 601–617.Google Scholar
  71. Okutani, T., 2005. Past, present and future studies on cephalopod diversity in tropical west Pacific. Phuket Marine Biological Center Research Bulletin 66: 39–50.Google Scholar
  72. Okutani, T. & J. A. McGowan, 1969. Systematics, distribution, and abundance of the epiplanktonic squid (Cephalopoda, Decapoda) larvae of the California Current, April, 1954–March, 1957. In Arrhenius, G. O. S., C. S. Cox, E. W. Fager, C. H. Hand, T. Newberry & M. B. Schaefer (eds), Bulletin of the Scripps Institution of Oceanography 14.Google Scholar
  73. Ovendon, J. R., J. Salini, S. O’Connor & R. Street, 2004. Pronounced genetic population structure in a potentially vagile fish species (Pristipomoides multidens, Teleosteo; Perciformes; Lutjanidae) from the East Indies triangle. Molecular Ecology 12: 1991–1999.CrossRefGoogle Scholar
  74. Pecl, G. T., 2001. Flexible reproductive strategies in tropical and temperate Sepioteuthis squids. Marine Biology 138: 93–101.CrossRefGoogle Scholar
  75. Pecl, G. T. & G. C. Jackson, 2008. The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Reviews in Fish Biology and Fisheries 18: 373–385.CrossRefGoogle Scholar
  76. Pecl, G. T., S. Tracey, J. Semmens & G. D. Jackson, 2006. Use of acoustic telemetry for spatial management of southern calamary, Sepioteuthis australis, a highly mobile inshore squid species. Marine Ecology Progress Series 328: 1–15.CrossRefGoogle Scholar
  77. Planes, D. & C. Fauvelot, 2002. Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56: 378–399.PubMedGoogle Scholar
  78. Rambaut, A. & A. J. Drummond, 2007. Tracer v1.4. Available from Accessed October 10, 2012.
  79. Rao, K. V., 1954. Biology and fishery of the Palk Bay squid, Sepioteuthis arctipinnis Gould. Indian Journal of Fisheries 1: 37–66.Google Scholar
  80. Reaka-Kudla, M. L., 1997. The global biodiversity of coral reefs: a comparison with rain forests. In Reaka-Kudla, M. L., D. E. Wilson & E. O. Wilson (eds), Biodiversity II: Understanding and Protecting Our Biological Resources. National Academies Press, Washington, DC: 83–108.Google Scholar
  81. Sala, E. & N. Knowlton, 2006. Global marine biodiversity trends. Annual Review of Environmental Resources 31: 93–122.CrossRefGoogle Scholar
  82. Salman, A., 2002. New report of the loliginid squid Sepioteuthis lessoniana Lesson, 1830 in the Mediterranean. Israel Journal of Zoology 48: 249–250.Google Scholar
  83. Schroth, W., G. Jarms, B. Streit & B. Schierwater, 2002. Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. BMC Evolutionary Biology 2: 1.PubMedCentralPubMedCrossRefGoogle Scholar
  84. Segawa, S., 1987. Life history of the oval squid, Sepioteuthis lessoniana in Kominato and adjacent waters central Honshu, Japan. Journal of the Tokyo University of Fisheries 74: 67–105.Google Scholar
  85. Segawa, S., T. Izuka, T. Tamashiro & T. Okutani, 1993a. A note on mating and egg deposition by Sepioteuthis lessoniana in Ishigaki Island, Okinawa, southwestern Japan. Venus, Japanese Journal of Malacology 52: 101–108.Google Scholar
  86. Segawa, S., S. Hirayama & T. Okutani, 1993b. Is Sepioteuthis lessoniana in Okinawa a single species? In Okutani, T., R. K. O’Dor & T. Kubodera (eds), Recent Advances in Cephalopod Fisheries Biology. Tokai University Press, Tokyo: 513–521.Google Scholar
  87. Shigeno, S., K. Tsuchiya & S. Segawa, 2001. Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. The Journal of Comparative Neurology 437: 449–475.PubMedCrossRefGoogle Scholar
  88. Slapeta, J., P. Lopex-Garcia & D. Moreira, 2006. Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Molecular Biology and Evolution 23: 23–29.PubMedCrossRefGoogle Scholar
  89. Solé-Cava, A. M., M. Klautau, N. Boury-Esnault, R. Borojecic & J. P. Thorpe, 1991. Genetic evidence for cryptic speciation in allopatric populations of two cosmopolitan species of the calcareous sponge genus Clathrina. Marine Biology 111: 381–386.CrossRefGoogle Scholar
  90. Soselisa, J., S. Marjuki & W. Subani, 1986. Production and fishing season of squids (Loligo spp.) in Lombok (West Nusa Tenggara) and adjacent waters. Journal of Penelitian Perikanan Lautan 34: 79–90.Google Scholar
  91. Sponer, R. & M. S. Roy, 2002. Phylogeographic analysis of the brooding brittle star Amphipholis squamata (Echinodermata) along the coast of New Zealand reveals high cryptic genetic variation and cryptic dispersal potential. Evolution 56: 1954–1967.PubMedGoogle Scholar
  92. Stocsits, R. R., H. Letsch, J. Hertel, B. Misof & P. F. Stadler, 2009. Accurate and efficient reconstruction of deep phylogenies from structured RNAs. Nucleic Acids Research 37: 6184–6193.PubMedCentralPubMedCrossRefGoogle Scholar
  93. Strugnell, J. M. & A. R. Lindgren, 2007. A barcode of life database for the Cephalopoda? Considerations and concerns. Reviews in Fish Biology and Fisheries 17: 337–344.CrossRefGoogle Scholar
  94. Strugnell, J., M. Norman, A. J. Drummond & A. Cooper, 2004. Neotenous origins for pelagic octopuses. Current Biology 14: R300–R301.PubMedCrossRefGoogle Scholar
  95. Strugnell, J., M. Norman, J. Jackson, A. J. Drummond & A. Cooper, 2005. Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Molecular Phylogenetics and Evolution 37: 426–441.PubMedCrossRefGoogle Scholar
  96. Sudjoko, B., 1987. Catch composition of squids (Cephalopods) by using bagan (lift net) in Probolinggo waters, East Java. Journal of Penelitian Perikanan Lautan 41: 81–89.Google Scholar
  97. Sugimoto, C. & Y. Ikeda, 2012. Ontogeny of schooling behavior in the oval squid Sepioteuthis lessoniana. Fisheries Science 78: 287–294.CrossRefGoogle Scholar
  98. Thompson, J. T. & W. M. Kier, 2001. Ontogenetic changes in mantle kinematics during escape-jet locomotion in the oval squid, Sepioteuthis lessoniana Lesson, 1830. Biological Bulletin 201: 16–154.Google Scholar
  99. Tokai, T. & Y. Ueta, 1999. Estimation of size selectivity for oval squid Sepioteuthis lessoniana in the squid jigging fishery of Tokushima Prefecture. Fishery Science 65: 448–454.Google Scholar
  100. Triantafillos, L. & M. Adams, 2001. Allozyme analysis reveals a complex population structure in the southern calamary Sepioteuthis australis from Australia and New Zealand. Marine Ecology Progress Series 212: 193–209.CrossRefGoogle Scholar
  101. Triantafillos, L. & M. Adams, 2005. Genetic evidence that the northern calamari (Sepioteuthis lessoniana), is a species complex in Australian waters. ICES Journal of Marine Science 62: 1665–1670.CrossRefGoogle Scholar
  102. Ueta, Y. & Y. Jo, 1989. Notes on ecology of the oval squid Sepioteuthis lessoniana in outer waters adjacent to the Kii Channel. Nippon Suisan Gakkaishi 55: 1699–1702.CrossRefGoogle Scholar
  103. Ueta, Y. & Y. Jo, 1990. Migration of the oval squid, Sepioteuthis lessoniana around Tokushima Prefecture. Suisanzohoku 38: 221–226.Google Scholar
  104. Vecchione, M., T. F. Brakoniecki, Y. Natsukari & R. T. Hanlon, 1998. A provisional generic classification of the family Loliginidae. In Voss, N. A., M. Vecchione, R. B. Toll & M. J. Sweeney (eds), Systematics and Biogeography of Cephalopods. Smithsonian Contributions to Zoology 586: 215–222.Google Scholar
  105. Villesen, P., 2007. FaBox: an online toolbox for FASTA sequences. Molecular Ecology Notes 7: 965–968.CrossRefGoogle Scholar
  106. Wada, Y. & T. Kobayashi, 1995. On an iteroparity of oval squid Sepioteuthis lessoniana. Nippon Suisan Gakkaishi 61: 151–158.CrossRefGoogle Scholar
  107. Wakabayashi, T., N. Suzuki, M. Sakai, T. Ichii & S. Chow, 2012. Phylogenetic relationships among the family Ommastrephidae (Mollusca: Cephalopoda) inferred from two mitochondrial DNA gene sequences. Marine Genomics 7: 11–16.PubMedCrossRefGoogle Scholar
  108. Walsh, P. S., D. A. Metzger & R. Higuchi, 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10: 506–513.PubMedGoogle Scholar
  109. Westheide, W. & H. Schmidt, 2003. Cosmopolitan versus cryptic meiofaunal polychaete species: an approach to a molecular taxonomy. Helgoland Marine Research 57: 1–6.Google Scholar
  110. Williams, S. T. & J. A. H. Benzie, 1997. Indo-West Pacific patterns of genetic differentiation in the high-dispersal starfish Linckia laevigata. Molecular Ecology 6: 559–573.CrossRefGoogle Scholar
  111. Wyrtki, K., 1961. Physical Oceanography of the Southeast Asian Waters. Scripps Institute of Oceanography, University of California, La Jolla, CA.Google Scholar
  112. Yang, Z. & B. Rannala, 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences 107(20): 9264–9269.CrossRefGoogle Scholar
  113. Yeatman, J. M. & J. A. H. Benzie, 1993. Cryptic speciation in Loligo from northern Australia. In Okutani, T., R. K. O’Dor & T. Kubodera (eds), Recent Advances in Cephalopod Fisheries Biology. Tokai University Press, Tokyo: 641–652.Google Scholar
  114. Zeidberg, L. & W. Hamner, 2002. Distribution of squid paralarvae, Loligo opalescens (Cephalopoda: Myopside), in the Southern California Bight in the three years following the 1997–1998 El Nino. Marine Biology 141: 111–122.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. H. Cheng
    • 8
    Email author
  • F. E. Anderson
    • 1
  • A. Bergman
    • 1
  • G. N. Mahardika
    • 2
  • Z. A. Muchlisin
    • 3
  • B. T. Dang
    • 4
  • H. P. Calumpong
    • 5
  • K. S. Mohamed
    • 6
  • G. Sasikumar
    • 7
  • V. Venkatesan
    • 6
  • P. H. Barber
    • 8
  1. 1.Department of ZoologySouthern Illinois UniversityCarbondaleUSA
  2. 2.Fakultas Kedokteran HewanUniversitas UdayanaSesetan-DenpasarIndonesia
  3. 3.Koordinatorat Kelautan dan PerikananUniversitas Syiah KualaBanda AcehIndonesia
  4. 4.Institute of Biotechnology and the EnvironmentNha Trang UniversityNha TrangVietnam
  5. 5.Institute of the Environment and Marine ScienceSilliman UniversityDumaguetePhilippines
  6. 6.Molluscan Fisheries DivisionCentral Marine Fisheries Research Institute (CMFRI)CochinIndia
  7. 7.Research Centre MangaloreCentral Marine Fisheries Research Institute (CMFRI)MangaloreIndia
  8. 8.Department of Ecology and Evolutionary BiologyUniversity of California-Los AngelesLos AngelesUSA

Personalised recommendations