Advertisement

Hydrobiologia

, Volume 737, Issue 1, pp 309–320 | Cite as

Assessing the responses of aquatic macrophytes to the application of a lanthanum modified bentonite clay, at Loch Flemington, Scotland, UK

  • Iain D. M. Gunn
  • Sebastian Meis
  • Stephen C. Maberly
  • Bryan M. Spears
PLANTS IN HYDROSYSTEMS

Abstract

Loch Flemington is a shallow lake of international conservation and scientific importance. In recent decades, its status has declined as a result of eutrophication and the establishment of non-native invasive aquatic macrophytes. As previous research had identified the lake bed sediments as an important source of phosphorus (P), the P-capping material Phoslock® was applied to improve water quality. This article documents the responses of the aquatic macrophyte community by comparing data collected between 1988 and 2011. Summer water-column total P concentrations decreased significantly and water clarity increased following treatment. Aquatic plant colonisation depth increased and plant coverage of the lake bed extended. However, the submerged vegetation remained dominated by the non-native Elodea canadensis Michx. Aquatic macrophyte community metrics indicated no significant change in trophic status. Species richness and the number of ‘natural’ eutrophic characteristic species remained broadly similar with no records of rare species of conservation interest. Loch Flemington is still classified as being in ‘unfavourable no change’ condition based on its aquatic macrophytes despite the water quality improvements. The implications of these results are discussed in relation to the future management of Loch Flemington and in the wider context of trying to improve our understanding of lake restoration processes.

Keywords

Eutrophication Loch Flemington Lake restoration P-capping material Aquatic macrophytes Lake management 

Notes

Acknowledgments

The authors wish to thank the following for carrying out aquatic macrophyte fieldwork at Loch Flemington: Dr Laurence Carvalho, Alex Kirika and Kathy Dale for the 2003/04 SCM surveys; to Sue Bell and Sabrina Eckert for the 2010 SCM surveys; to Mike O’Malley, Amy Anderson and Myriam Kellou for their help with fieldwork over the 2009–2011 period. The authors are especially grateful to Dr Mattie O’Hare for his help and advice in preparing this article. The input of Dr Linda May and Dr Rupert Perkins into the Loch Flemington project is gratefully acknowledged. The authors are also grateful to Mr. John Pottie and Dr. Alastair Noble for their continued support of the monitoring programme. The authors also wish to thank Nigel Traill and Said Yasseri from Phoslock® Europe GmbH, Ian Milne from the Scottish Environment Protection Agency, and Tim Dawson, Dr Mary Hennessy, Ben Leyshon and Dr Iain Sime from Scottish Natural Heritage for their valuable support of this research. The authors also thank two anonymous reviewers for their constructive comments which improved the article. Phoslock® Europe GmbH was not involved in the monitoring design, sample analysis or interpretation of the data. Sebastian Meis was jointly funded by CEH and by a DAAD Scholarship (agreement number D/08/42393).

References

  1. Abernethy, V. J., M. R. Sabbatini & K. J. Murphy, 1996. Response of Elodea canadensis Michx and Myriophyllum spicatum L to shade, cutting and competition in experimental culture. Hydrobiologia 340: 219–224.CrossRefGoogle Scholar
  2. Bennett, E. M., S. R. Carpenter & N. F. Caraco, 2001. Human impact on erodible phosphorus and eutrophication: a global perspective. Bioscience 51: 227–234.CrossRefGoogle Scholar
  3. Bennion, H., H. Clarke, T. Davidson, D. Morley, N. Rose, S. Turner & H. Yang, 2008. Palaeoecological study of seven mesotrophic lochs. Report to the Scottish Environment Protection Agency and Scottish Natural Heritage. Research Report Number: 121. ISSN: 1366-7300.Google Scholar
  4. Bowmer, K. H., S. W. L. Jacobs & G. R. Sainty, 1995. Identification, biology and management of Elodea canadensis, Hydrocharitaceae. Journal of Aquatic Plant Management 17: 4–12.Google Scholar
  5. Caffrey, J. M., M. Millane, S. Evers, H. Moran & M. Butler, 2010. A novel approach to aquatic weed control and habitat restoration using biodegradable jute matting. Aquatic Invasions 5: 123–129.CrossRefGoogle Scholar
  6. Cooke, G. D., E. B. Welch, S. A. Peterson & S. A. Nichols, 2005. Restoration and Management of Lakes and Reservoirs, 3rd ed. CRC Press, Taylor & Francis Group, Boca Raton.CrossRefGoogle Scholar
  7. Council of the European Communities, 1992. Council directive 92/43//EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities L206: 7–50.Google Scholar
  8. Council of the European Communities, 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L327: 1–73.Google Scholar
  9. Duigan, C., W. Kovach & M. Palmer, 2006. Vegetation communities of British Lakes: a revised classification. Joint Nature Conservation Committee, Peterborough.Google Scholar
  10. Duigan, C., W. Kovach & M. Palmer, 2007. Vegetation communities of British Lakes: a revised classification for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 147–173.CrossRefGoogle Scholar
  11. EEA, 2012. European Waters – Assessment of Status and Pressures. EEA report No 8/2012. European Environment Agency, Copenhagen, Denmark.Google Scholar
  12. Fisher, J., T. Barker, C. James & S. Clarke, 2009. Water quality in chronically nutrient-rich lakes: the example of the Shropshire–Cheshire Meres. Freshwater Reviews 2: 79–99.CrossRefGoogle Scholar
  13. Foy, R. H., 1985. Phosphorus inactivation in a eutrophic lake by the direct addition of ferric aluminium sulphate: impact of iron and phosphorus. Freshwater Biology 15: 613–629.CrossRefGoogle Scholar
  14. Gordon, J. E. & C. A. Auton, 1993. The Kildrummie Kames. In Gordon, J. E. & D. G. Sutherland (eds), Quaternary of Scotland. Chapman and Hall, London: 176–181.CrossRefGoogle Scholar
  15. Gunn, I. D. M., M. O’Hare, L. Carvalho, D. B. Roy, P. Rothery & A. M. Darwell, 2010. Assessing the condition of lake habitats: a test of methods for surveying aquatic macrophyte communities. Hydrobiologia 656: 87–97.CrossRefGoogle Scholar
  16. Havens, K. E., K. R. Jin, A. J. Rodusky, B. Sharfstein, M. A. Brady, T. L. East, N. Iricanin, R. T. James, M. C. Harwell & A. D. Steinman, 2001. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level. Scientific World Journal 1: 44–70.PubMedCrossRefGoogle Scholar
  17. Howard-Williams, C., A.-M. Schwarz & V. Reid, 1996. Patterns of aquatic weed regrowth following mechanical harvesting in New Zealand hydro-lakes. Hydrobiologia 340: 229–234.CrossRefGoogle Scholar
  18. Jeppesen, E., M. Søndergaard, J. P. Jensen & T. L. Lauridsen, 2003. Restoration of eutrophic lakes: A global perspective. In Kumagai, M. & W. F. Vincent (eds), Freshwater Management: Global Versus Local Perspectives. Springer-Verlag, Tokoyo: 135–151.CrossRefGoogle Scholar
  19. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Kohler, E. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Noges, G. Persson, G. Phillips, R. Portielje, C. L. Schelske, D. Straile, I. Tatrai, E. Willen & M. Winder, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  20. JNCC, 2005. Common Standards Monitoring Guidance for Standing Waters. Joint Nature Conservation Committee, Peterborough.Google Scholar
  21. JNCC, 2009. Common Standards Monitoring Guidance for Standing Waters. Revised 10 November 2009, Joint Nature Conservation Committee, Peterborough.Google Scholar
  22. Jupp, B. P. & D. H. N. Spence, 1977. Limitations on macrophytes in a eutrophic lake, Loch Leven. 1. Effects of phytoplankton. Journal of Ecology 65: 175–186.CrossRefGoogle Scholar
  23. Jupp, B. P., D. H. N. Spence & R. H. Britton, 1974. The distribution and production of submerged macrophytes in Loch Leven, Kinross. Proceedings of the Royal Society of Edinburgh: B 74: 195–208.Google Scholar
  24. Maberly, S. C., 1983. The interdependence of photon irradiance and free carbon-dioxide or bicarbonate concentration on the photosynthethic compensation points of fresh-water plants. New Phytologist 93: 1–12.CrossRefGoogle Scholar
  25. May, L. & L. Carvalho, 2010. Maximum growing depth of macrophytes in Loch Leven, Scotland, United Kingdom, in relation to historical changes in estimated phosphorus loading. Hydrobiologia 646: 123–131.CrossRefGoogle Scholar
  26. May, L., I. Gunn & A. Kirika, 2001. Phosphorus Study at Loch Flemington. Unpublished report to Scottish Natural Heritage. Centre for Ecology & Hydrology.Google Scholar
  27. May, L., B. M. Spears, B. J. Dudley & T. W. Hatton-Ellis, 2010. The importance of nitrogen limitation in the restoration of Llangorse Lake, Wales, UK. Journal of Environmental Monitoring 12: 338–346.PubMedCrossRefGoogle Scholar
  28. Meis, S., B. M. Spears, S. C. Maberly, M. B. O’Malley & R. G. Perkins, 2012. Sediment amendment with Phoslock® in Clatto Reservoir (Dundee, UK): Investigating changes in sediment elemental composition and phosphorus fractionation. Journal of Environmental Management 93: 185–193.PubMedCrossRefGoogle Scholar
  29. NCC, 1988. Loch Flemington: Nature Conservancy Council Loch Survey Aquatic Macrophyte Field Data (19/07/1988). Joint Nature Conservation Committee, Peterborough.Google Scholar
  30. Palmer, M. A., 1992. A Botanical Classification of Standing Waters in Great Britain and a Method for the Use of Macrophyte Flora in Assessing Changes in Water Quality Incorporating a Reworking of Data 1992. Research and Survey in Nature Conservation, No. 19. Joint Nature Conservation Committee, Peterborough.Google Scholar
  31. Palmer, M. A., S. L. Bell & I. Butterfield, 1992. A botanical classification of standing waters in Britain: applications for conservation and monitoring. Aquatic Conservation: Marine and Freshwater Ecosystems 2: 125–143.CrossRefGoogle Scholar
  32. Preston, C. D., 1995. Pondweeds of Great Britain and Ireland, BSBI Handbook No. 8. Botanical Society of the British Isles, London.Google Scholar
  33. Preston, C. D. & J. M. Croft, 1997. Aquatic Plants in Britain and Ireland. Harley Books, Colchester.Google Scholar
  34. Randall, S., D. Harper & B. Brierley, 1999. Ecological and ecophysiological impacts of ferric dosing in reservoirs. Hydrobiologia 395(396): 355–364.CrossRefGoogle Scholar
  35. Riis, R. & B. J. F. Biggs, 2001. Distribution of macrophytes in New Zealand streams and lakes in relation to disturbance frequency and resource supply – a synthesis and conceptual model. New Zealand Journal of Marine and Freshwater Research 35: 255–267.CrossRefGoogle Scholar
  36. Ross, G., F. Haghseresht & T. E. Cloete, 2008. The effect of pH and anoxia on the performance of Phoslock®, a phosphorus binding clay. Harmful Algae 7: 545–550.CrossRefGoogle Scholar
  37. Sas, H., 1989. Lake Restoration by Reduction of Nutrient Loading: Expectations, Experiences, Extrapolations. Acad Verlag Richarz, St. Augustin.Google Scholar
  38. Scheffer, M., 2004. Ecology of shallow lakes. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  39. Schindler, D. W., 2006. Recent advances in the understanding and management of eutrophication. Limnology and Oceanography 51: 356–363.CrossRefGoogle Scholar
  40. Simpson, D. A., 1984. A short history of the introduction and spread of Elodea Michx. in the British Isles. Watsonia 15: 1–9.Google Scholar
  41. Søndergaard, M., E. Jeppesen, J. P. Jensen & S. L. Amsinck, 2005. Water framework directive: ecological classification of Danish lakes. Journal of Applied Ecology 42: 616–629.CrossRefGoogle Scholar
  42. Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.CrossRefGoogle Scholar
  43. Spears, B. M. & I. Jones, 2010. The long-term (1979–2005) effects of the north Atlantic oscillation on wind induced wave mixing in Loch Leven (Scotland). Hydrobiologia 646: 49–59.CrossRefGoogle Scholar
  44. Spears, B. M., I. D. M. Gunn, L. Carvalho, I. J. Winfield, B. Dudley, K. Murphy & L. May, 2009. An evaluation of methods for sampling macrophyte maximum colonisation depth in Loch Leven, Scotland. Aquatic Botany 91: 75–81.CrossRefGoogle Scholar
  45. Spears, B. M., S. Meis, S. C. Maberly, I. D. M. Gunn & L. May, 2012. Assessing Recovery from Eutrophication in Loch Flemington Following the Control of Sediment Phosphorus Release Using Phoslock®. Unpublished Report to Scottish Natural Heritage. Centre for Ecology & Hydrology.Google Scholar
  46. Spears, B. M., B. Dudley, K. Reitzel & E. Rydin, 2013a. Geo-engineering in lakes – a call for consensus. Environmental Science & Technology 47: 3953–3954.CrossRefGoogle Scholar
  47. Spears, B. M., S. Meis, A. Anderson & M. Kellou, 2013b. Comparison of phosphorus (P) removal properties of materials proposed for the control of sediment P release in UK lakes. Science of the Total Environment 442: 103–110.PubMedCrossRefGoogle Scholar
  48. Stewart, N. F., 2004. Important Stonewort Areas. An Assessment of the Best Areas for Stoneworts in the United Kingdom. Plantlife International, Salisbury.Google Scholar
  49. Trenberth, K. W., 1983. What are the seasons? Bulletin of the American Meterological Society 64: 1276–1277.CrossRefGoogle Scholar
  50. UKLakes Database. http://www.UKLakes.net/.
  51. UK TAG, 2008. UK Environmental Standards and Conditions (Phase 2). UK Technical Advisory Group on the Water Framework Directive.Google Scholar
  52. Verdonschot, P., D. Angler, À. Boria, S. Brucet, C. K. Field, I. Gunn, R. Johnson, J. Kail, M. Kernan, A. Marzin, L. May, S. Meis & B. Spears, 2011. WISER Deliverable D6.4-2: Report on the Differences Between Cause-Effect-Recovery Chains of Different Drivers Within the Water Categories. European Commission.Google Scholar
  53. Wade, P. M., 1990. Physical control of aquatic weeds. In Pieterse, A. H. & K. J. Murphy (eds), Aquatic Weeds the Ecology and Management of Nuisance Aquatic Vegetation. Oxford Science Publications, Oxford: 93–135.Google Scholar
  54. Wingfield, R. A., K. Murphy, P. Hollingworth & M. Gaywood, 2004. The Ecology of Najas flexilis. Scottish Natural Heritage Commissioned Report No. 017. Scottish Natural Heritage.Google Scholar
  55. Wingfield, R., K. Murphy & M. Gaywood, 2005. Lake habitat suitability for the rare European macrophyte Najas flexilis (Willd.) Rotsk & Schmidt. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 227–241.CrossRefGoogle Scholar
  56. Withers, P. J. A. & P. M. Haygarth, 2007. Agriculture, phosphorus and eutrophication: a European perspective. Soil Use and Management 23: 1–4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Iain D. M. Gunn
    • 1
  • Sebastian Meis
    • 1
  • Stephen C. Maberly
    • 2
  • Bryan M. Spears
    • 1
  1. 1.Centre for Ecology & HydrologyPenicuikUK
  2. 2.Centre for Ecology & HydrologyLancaster Environment CentreBailriggUK

Personalised recommendations