Hydrobiologia

, Volume 726, Issue 1, pp 195–211 | Cite as

Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil

  • Lisa G. Chambers
  • Stephen E. Davis
  • Tiffany Troxler
  • Joseph N. Boyer
  • Alan Downey-Wall
  • Leonard J. Scinto
Primary Research Paper

Abstract

Saltwater intrusion and inundation can affect soil microbial activity, which regulates the carbon (C) balance in mangroves and helps to determine if these coastal forests can keep pace with sea level rise (SLR). This study evaluated the effects of increased salinity (+15 ppt), increased inundation (−8 cm), and their combination, on soil organic C loss from a mangrove peat soil (Everglades, Florida, USA) under simulated tides. Soil respiration (CO2 flux), methane (CH4) flux, dissolved organic carbon (DOC) production, and porewater nutrient concentrations were quantified. Soil respiration was the major pathway of soil organic C loss (94–98%) and was approximately 90% higher in the control water level than the inundated treatment under elevated salinity. Respiration rate increased with water temperature, but depended upon salinity and tidal range. CH4 flux was minimal, while porewater DOC increased with a concomitant, significant decline in soil bulk density under increased inundation. Porewater ammonium increased (73%) with inundation and soluble reactive phosphorus increased (32%) with salinity. Overall, the decline in soil organic C mineralization from combined saltwater intrusion and prolonged inundation was not significant, but results suggest SLR could increase this soil’s susceptibility to peat collapse and accelerate nutrient and DOC export to adjacent Florida Bay.

Keywords

Soil carbon Sea level rise Everglades Mangrove Saltwater intrusion Greenhouse gas production 

References

  1. Alongi, D. M., 2008. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine Coastal and Shelf Science 76: 1–13.CrossRefGoogle Scholar
  2. Alongi, D. M., G. Wattayakorn, J. Pfitzner, F. Tirendi, I. Zagorskis, G. J. Brunskill, A. Davidson & B. F. Clough, 2001. Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand. Marine Geology 179: 85–103.CrossRefGoogle Scholar
  3. Aziz, I. & M. A. Khan, 2001. Effect of seawater on the growth, ion content and water potential of Rhizophora mucronata Lam. Journal of Plant Research 114: 369–373.CrossRefGoogle Scholar
  4. Baldwin, D. S., G. N. Rees, A. M. Mitchell, G. Watson & J. Williams, 2006. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 26: 455–464.CrossRefGoogle Scholar
  5. Boelter, D. H., 1965. Hydraulic conductivity of peats. Soil Science 100: 227–231.CrossRefGoogle Scholar
  6. Bouillon, S., J. J. Middelburg, F. Dehairs, A. V. Borges, G. Abril, M. R. Flindt, S. Ulomi & E. Kristensen, 2007. Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania). Biogeosciences 4: 311–322.CrossRefGoogle Scholar
  7. Bouillon, S., A. V. Borges, E. Castaneda-Moya, K. Diele, T. Dittmar, N. C. Duke, E. Kristensen, S. Y. Lee, C. Marchand, J. J. Middelburg, V. H. Rivera-Monroy, T. J. Smith & R. R. Twilley, 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles 22: 12.CrossRefGoogle Scholar
  8. Cao, Y. P., P. G. Green & P. A. Holden, 2008. Microbial community composition and denitrifying enzyme activities in salt marsh sediments. Applied and Environmental Microbiology 74: 7585–7595.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Capone, D. G. & R. P. Kiene, 1988. Comparison of microbial dynamics in marine and fresh-water sediments: contrasts in anaerobic carbon catabolism. Limnology and Oceanography 33: 725–749.CrossRefGoogle Scholar
  10. Castaneda-Moya, E., R. R. Twilley, V. H. Rivera-Monroy, K. Q. Zhang, S. E. Davis & M. Ross, 2010. Sediment and nutrient deposition associated with hurricane Wilma in mangroves of the Florida Coastal Everglades. Estuaries and Coasts 33: 45–58.CrossRefGoogle Scholar
  11. Chambers, L. G., K. R. Reddy & T. Z. Osborne, 2011. Short-term response of carbon cycling to salinity pulses in a freshwater wetland. Soil Science Society of America Journal 75: 2000–2007.CrossRefGoogle Scholar
  12. Chambers, L. G., T. Z. Osborne, & K. R. Reddy, 2013. Effect of salinity pulsing events on soil organic carbon loss across an intertidal wetland gradient: a laboratory experiment. Biogeochemistry 115: 363–383.Google Scholar
  13. Chen, R. H. & R. R. Twilley, 1999. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River estuary, Florida. Estuaries 22: 955–970.CrossRefGoogle Scholar
  14. Craft, C., S. Broome & C. Campbell, 2002. Fifteen years of vegetation and soil development after brackish-water marsh creation. Restoration Ecology 10: 248–258.CrossRefGoogle Scholar
  15. Davis, S. M., D. L. Childers, J. J. Lorenz, H. R. Wanless & T. E. Hopkins, 2005. A conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades. Wetlands 25: 832–842.CrossRefGoogle Scholar
  16. DeBusk, W. F. & K. R. Reddy, 1998. Turnover of detrital organic carbon in a nutrient-impacted Everglades marsh. Soil Science Society of America Journal 62: 1460–1468.CrossRefGoogle Scholar
  17. Delaune, R. D., C. J. Smith & W. H. Patrick, 1983. Methane release from Gulf-coast wetlands. Tellus Series B-Chemical and Physical Meteorology 35: 8–15.CrossRefGoogle Scholar
  18. Donato, D. C., J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham & M. Kanninen, 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4: 293–297.CrossRefGoogle Scholar
  19. Edmonds, J. W., N. B. Weston, S. B. Joye, X. Z. Mou & M. A. Moran, 2009. Microbial community response to seawater amendment in low-salinity tidal sediments. Microbial Ecology 58: 558–568.PubMedCrossRefGoogle Scholar
  20. Fagherazzi, S., M. L. Kirwan, S. M. Mudd, G. R. Guntenspergen, S. Temmerman, A. D’Alpaos, J. van de Koppel, J. M. Rybczyk, E. Reyes, C. Craft & J. Clough, 2012. Numerical models of salt marsh evolution: ecological, geomorphic, and climate factors. Reviews of Geophysics 50: 28.CrossRefGoogle Scholar
  21. FitzGerald, D. M., M. S. Fenster, B. A. Argow & I. V. Buynevich, 2008. Coastal impacts due to sea-level rise. Annual Review of Earth and Planetary Sciences 36: 601–647.CrossRefGoogle Scholar
  22. Gaiser, E. E., A. Zafiris, P. L. Ruiz, F. A. C. Tobias & M. S. Ross, 2006. Tracking rates of ecotone migration due to salt-water encroachment using fossil mollusks in coastal South Florida. Hydrobiologia 569: 237–257.CrossRefGoogle Scholar
  23. Hale, R. L. & P. M. Groffman, 2006. Chloride effects on nitrogen dynamics in forested and suburban stream debris dams. Journal of Environmental Quality 35: 2425–2432.PubMedCrossRefGoogle Scholar
  24. Harvey, J. W. & P. V. McCormick, 2009. Groundwater’s significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, Everglades, South Florida, USA. Hydrogeology Journal 17: 185–201.CrossRefGoogle Scholar
  25. Howarth, R. W., 1984. The ecological significance of sulfur in the energy dynamics of salt-marsh and coastal marine-sediments. Biogeochemistry 1: 5–27.CrossRefGoogle Scholar
  26. Ikenaga, M., R. Guevara, A. L. Dean, C. Pisani & J. N. Boyer, 2010. Changes in community structure of sediment bacteria along the Florida Coastal Everglades marsh–mangrove–seagrass salinity gradient. Microbial Ecology 59: 284–295.PubMedCrossRefGoogle Scholar
  27. IPCC, 2007. Climate Change 2007: A Synthesis Report. In: XXVII IP (ed.). Valencia, Spain: p 22.Google Scholar
  28. Jakobsen, P., W. H. Patrick & B. G. Williams, 1981. Sulfide and methane formation in soils and sediments. Soil Science 132: 279–287.CrossRefGoogle Scholar
  29. Joye, S. B. & J. T. Hollibaugh, 1995. Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science 270: 623–627.CrossRefGoogle Scholar
  30. Jun, M., A. E. Altor & C. B. Craft, 2012. Effects of increased salinity and inundation on inorganic nitrogen exchange and phosphorus sorption by tidal freshwater floodplain forest soils, Georgia (USA). Estuaries and Coasts. doi:10.1007/s12237-012-9499-6.Google Scholar
  31. Kelble, C. R., E. M. Johns, W. K. Nuttle, T. N. Lee, R. H. Smith & P. B. Ortner, 2007. Salinity patterns of Florida Bay. Estuarine Coastal and Shelf Science 71: 318–334.CrossRefGoogle Scholar
  32. King, G. M. & W. J. Wiebe, 1980. Regulation of sulfate concentrations and methanogenesis in salt-marsh soils. Estuarine and Coastal Marine Science 10: 215–223.CrossRefGoogle Scholar
  33. King, G. M., M. J. Klug, R. G. Wiegert & A. G. Chalmers, 1982. Relation of soil–water movement and sulfide concentration to Spartina-alterniflora production in a Georgia salt marsh. Science 218: 61–63.PubMedCrossRefGoogle Scholar
  34. Kirwan, M. L. & L. K. Blum, 2011. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences 8: 987–993.CrossRefGoogle Scholar
  35. Kirwan, M. L., G. R. Guntenspergen, A. D’Alpaos, J. T. Morris, S. M. Mudd & S. Temmerman, 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37: 5.CrossRefGoogle Scholar
  36. Koch, M. S., I. A. Mendelssohn & K. L. McKee, 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35: 399–408.CrossRefGoogle Scholar
  37. Kool, D. M., P. Buurman & D. H. Hoekman, 2006. Oxidation and compaction of a collapsed peat dome in Central Kalimantan. Geoderma 137: 217–225.CrossRefGoogle Scholar
  38. Kostka, J. E., A. Roychoudhury & P. Van Cappellen, 2002. Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry 60: 49–76.CrossRefGoogle Scholar
  39. Krauss, K. W. & J. L. Whitbeck, 2012. Soil greenhouse gas fluxes during wetland forest retreat along the Lower Savannah River, Georgia (USA). Wetlands 32: 73–81.CrossRefGoogle Scholar
  40. Krauss, K. W., J. L. Whitbeck & R. J. Howard, 2012. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater). Plant and Soil 358: 265–274.CrossRefGoogle Scholar
  41. Kristensen, E., S. I. Ahmed & A. H. Devol, 1995. Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnology and Oceanography 40: 1430–1437.CrossRefGoogle Scholar
  42. Kristensen, E., S. Bouillon, T. Dittmar & C. Marchand, 2008. Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany 89: 201–219.CrossRefGoogle Scholar
  43. Laanbroek, H. J., 2010. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany 105: 141–153.PubMedCrossRefGoogle Scholar
  44. Lugo, A., S. Brown & M. Brinson, 1989. Concepts in wetland ecology. In Lugo, A., S. Brown & M. Brinson (eds), Ecosystems of the World 15. Elsevier, Amsterdam: 53–85.Google Scholar
  45. Marshall, N., 1994. Mangrove conservation in relation to overall environmental considerations. Hydrobiologia 285: 303–309.CrossRefGoogle Scholar
  46. McKee, K. L., 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine Coastal and Shelf Science 91: 475–483.CrossRefGoogle Scholar
  47. McKee, K. L., D. R. Cahoon & I. C. Feller, 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–556.CrossRefGoogle Scholar
  48. Moorhead, K. K. & M. M. Brinson, 1995. Response of wetlands to rising sea-level in the lower coastal-plain of North Carolina. Ecological Applications 5: 261–271.CrossRefGoogle Scholar
  49. Morris, J. T., P. V. Sundareshwar, C. T. Nietch, B. Kjerfve & D. R. Cahoon, 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877.CrossRefGoogle Scholar
  50. Naidoo, G., 1985. Effects of waterlogging and salinity on plant water relations and on the accumulation of solute in 3 mangrove species. Aquatic Botany 22: 133–143.CrossRefGoogle Scholar
  51. Neubauer, S. C., 2011. Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuaries and Coasts. doi:10.1007/s12237-011-9455-x.Google Scholar
  52. Neubauer, S. C., W. D. Miller & I. C. Anderson, 2000. Carbon cycling in a tidal freshwater marsh ecosystem: a carbon gas flux study. Marine Ecology-Progress Series 199: 13–30.CrossRefGoogle Scholar
  53. Nicholls, R. J., F. M. J. Hoozemans & M. Marchand, 1999. Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Global Environmental Change-Human and Policy Dimensions 9: S69–S87.CrossRefGoogle Scholar
  54. Patrick, W. H. & R. D. DeLaune, 1977. Chemical and biological redox systems affecting nutrient availability in the coastal wetlands. Geoscience and Man. 18: 131–137.Google Scholar
  55. Portnoy, J. W. & A. E. Giblin, 1997. Biogeochemical effects of seawater restoration to diked salt marshes. Ecological Applications 7: 1054–1063.CrossRefGoogle Scholar
  56. Rietz, D. N. & R. J. Haynes, 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology & Biochemistry 35: 845–854.CrossRefGoogle Scholar
  57. Rivera-Monroy, V. H. & R. R. Twilley, 1996. The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos Lagoon, Mexico). Limnology and Oceanography 41: 284–296.CrossRefGoogle Scholar
  58. Rivera-Monroy, V. H., K. de Mutsert, R. R. Twilley, E. Castaneda-Moya, M. M. Romigh & S. E. Davis, 2007. Patterns of nutrient exchange in a riverine mangrove forest in the Shark River Estuary, Florida, USA. Hydrobiologia 17: 169–178.Google Scholar
  59. Romigh, M. M., S. E. Davis, V. T. Rivera-Monroy & R. R. Twilley, 2006. Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal Everglades. Hydrobiologia 569: 505–516.CrossRefGoogle Scholar
  60. Rysgaard, S., P. Thastum, T. Dalsgaard, P. B. Christensen & N. P. Sloth, 1999. Effects of salinity on NH4 + adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 22: 21–30.CrossRefGoogle Scholar
  61. Saha, A. K., S. Saha, J. Sadle, J. Jiang, M. S. Ross, R. M. Price, L. Sternberg & K. S. Wendelberger, 2011. Sea level rise and South Florida coastal forests. Climatic Change 107: 81–108.CrossRefGoogle Scholar
  62. Sangiorgio, F., A. Basset, M. Pinna, L. Sabetta, M. Abbiati, M. Ponti, M. Minocci, S. Orfanidis, A. Nicolaidouc, S. Moncheva, A. Trayanova, L. Georgescu, S. Dragan, S. Beqiraj, D. Koutsoubas, A. Evagelopoulos & S. Reizopoulou, 2008. Environmental factors affecting Phragmites australis litter decomposition in Mediterranean and Black Sea transitional waters. Aquatic Conservation-Marine and Freshwater Ecosystems 18: S16–S26.CrossRefGoogle Scholar
  63. Seo, D. C., K. Yu & R. D. Delaune, 2008. Influence of salinity level on sediment denitrification in a Louisiana estuary receiving diverted Mississippi River water. Archives of Agronomy and Soil Science 54: 249–257.CrossRefGoogle Scholar
  64. Sherman, R. E., T. J. Fahey & P. Martinez, 2003. Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6: 384–398.CrossRefGoogle Scholar
  65. Smith, C. J., R. D. Delaune & W. H. Patrick, 1983. Carbon-dioxide emissions and carbon accumulation in coastal wetlands. Estuarine Coastal and Shelf Science 17: 21–29.CrossRefGoogle Scholar
  66. Smoak, J. M., J. L. Breithaupt, T. J. I. Smith & C. J. Sanders, 2012. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. Catena.Google Scholar
  67. Spalding, M., M. Kainuma & L. Collins, 2010. World Atlas of Mangroves. Earthscan, London.Google Scholar
  68. Stagg, C. L. & I. A. Mendelssohn, 2010. Restoring ecological function to a submerged salt marsh. Restoration Ecology 18: 10–17.CrossRefGoogle Scholar
  69. Twilley, R. R., R. H. Chen & T. Hargis, 1992. Carbon sinks in mangrove and their implications to carbon budget of tropical coastal ecosystems. Water Air and Soil Pollution 64: 265–288.CrossRefGoogle Scholar
  70. Valiela, I., J. L. Bowen & J. K. York, 2001. Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51: 807–815.CrossRefGoogle Scholar
  71. Wanless, H., R. Parkinson & L. Tedesco, 1994. Sea level control on stability of Everglades wetlands. In Davis, S. & J. Ogden (eds), Everglades: The Ecosystem and its Restoration. St. Lucie, Boca Raton: 198–224.Google Scholar
  72. Weston, N. B., R. E. Dixon & S. B. Joye, 2006. Ramifications of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization. Journal of Geophysical Research-Biogeosciences 111: 14.CrossRefGoogle Scholar
  73. Weston, N. B., M. A. Vile, S. C. Neubauer & D. J. Velinsky, 2011. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102: 135–151.CrossRefGoogle Scholar
  74. Wichern, J., F. Wichern & R. G. Joergensen, 2006. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137: 100–108.CrossRefGoogle Scholar
  75. Wright, A. L. & K. R. Reddy, 2001. Heterotrophic microbial activity in northern Everglades wetland soils. Soil Science Society of America Journal 65: 1856–1864.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lisa G. Chambers
    • 1
  • Stephen E. Davis
    • 2
  • Tiffany Troxler
    • 3
  • Joseph N. Boyer
    • 4
  • Alan Downey-Wall
    • 5
  • Leonard J. Scinto
    • 3
  1. 1.Earth and Atmospheric SciencesSaint Louis UniversitySaint LouisUSA
  2. 2.Everglades FoundationPalmetto BayUSA
  3. 3.Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  4. 4.Center for the EnvironmentPlymouth State UniversityPlymouthUSA
  5. 5.Department of Life SciencesTexas A&M University - Corpus ChristiCorpus ChristiUSA

Personalised recommendations