, Volume 724, Issue 1, pp 293–306 | Cite as

The influence of anthropogenic shoreline changes on the littoral abundance of fish species in German lowland lakes varying in depth as determined by boosted regression trees

  • W.-C. LewinEmail author
  • T. Mehner
  • D. Ritterbusch
  • U. Brämick
Primary Research Paper


Residential development on lake shores is regularly associated with the conversion of natural littoral habitats to riprap, sheet piles, beaches, parks, or marinas. The subsequent loss of littoral vegetation induces a decline of structural diversity and impacts littoral fish communities. These impacts may be shaped by lake morphology. Using boosted regression trees (BRT) to relate fish abundance data from 57 north-east German lowland lakes to various factors characterizing trophic state, lake morphology, and shoreline development, we investigated the response of 11 fish species to shoreline development. The analyses revealed that mean depth followed by trophic level and shoreline length (SL) contributed most in explaining littoral fish abundance. BRT models built for deep and shallow lakes separately confirmed that primarily trophic level and SL influenced fish abundance but that littoral vegetation was relatively more important in deep compared to shallow lakes, indicating that the effects of shoreline development may be more pronounced in deep lakes where the littoral makes up a smaller proportion of the lake area as compared to shallow lakes. The BRT further demonstrated species-specific responses to shoreline degradation, indicating that the reliability of ecological quality assessments of lakes can be improved by applying separate metrics for individual species.


Shoreline development Boosted regression tree Littoral fish Shallow lake Deep lake 



The study was financed by the German Federal Ministry of Education and Research (BMBF, grant no. 0330031) and by the German Ministry of Infrastructure and Agriculture of Brandenburg. We thank I. Borgmann, R. Frenzel, T. Rohde, A. Türck, and F. Weichler for their help during the sampling survey and the two anonymous reviewers for their valuable comments.

Supplementary material

10750_2013_1746_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 28 kb)


  1. Argillier, C., S. Caussé, M. Gevrey, S. Pédron, J. De Bortoli, S. Brucet, M. Emmrich, E. Jeppesen, T. Lauridsen, T. Mehner, M. Olin, M. Rask, P. Volta, I. J. Winfield, F. Kelly, T. Krause, A. Palm & K. Holmgren, 2013. Development of a fish-based index to assess the eutrophication status of European lakes. Hydrobiologia 704(1): 193–211.CrossRefGoogle Scholar
  2. Babler, A. L., C. T. Solomon & P. R. Schilke, 2008. Depth-specific patterns of benthic secondary production in an oligotrophic lake. Journal of the North American Benthological Society 27(1): 108–119.CrossRefGoogle Scholar
  3. Balon, E. K., 1975. Reproductive guilds of fishes: a proposal and definition. Journal of the Fisheries Research Board of Canada 32: 821–864.CrossRefGoogle Scholar
  4. Benson, B. J. & J. J. Magnuson, 1992. Spatial heterogeneity of littoral fish assemblages in lakes: relation to species diversity and habitat structure. Canadian Journal of Fisheries and Aquatic Sciences 49: 1493–1500.CrossRefGoogle Scholar
  5. Bohlen, J., 2003. Untersuchungen zur Autökologie des Steinbeißers, Cobitis taenia. Dissertation, Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin.Google Scholar
  6. Brämick, U., E. Fladung & P. Doering-Arjes, 2008. Aalmanagementplan – Flussgebietsgemeinschaft Elbe. Institute of Inland Fisheries, Potsdam.Google Scholar
  7. Brauns, M., X. F. Garcia, N. Walz & M. T. Pusch, 2007. Effects of human shoreline development on littoral macroinvertebrates in lowland lakes. Journal of Applied Ecology 44: 1138–1144.CrossRefGoogle Scholar
  8. Bryan, M. D. & D. L. Scarnecchia, 1992. Species richness, composition, and abundance of fish larvae and juveniles inhabiting natural and developed shorelines of a glacial Iowa lake. Environmental Biology of Fishes 35: 329–341.CrossRefGoogle Scholar
  9. Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.CrossRefGoogle Scholar
  10. Christensen, D. L., B. R. Herwig, D. E. Schindler & S. R. Carpenter, 1996. Impacts of lakeshore residential development on coarse woody debris in north temperate lakes. Ecological Applications 6: 1143–1149.CrossRefGoogle Scholar
  11. Coops, H., M. Bekliogly & T. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems—workshop conclusions. Hydrobiologia 506–509: 23–27.CrossRefGoogle Scholar
  12. Crowder, L. B., D. D. Squires & J. A. Rice, 1997. Nonadditive effects of terrestrial and aquatic predators on juvenile estuarine fish. Ecology 78: 1796–1804.CrossRefGoogle Scholar
  13. De Nie, H. W., 1987. The decrease in aquatic vegetation in Europe and its consequences for fish populations. EIFAC/CECPI Occasional Paper 19. FAO, Rome: 1–52.Google Scholar
  14. De’Ath, G., 2007. Boosted trees for ecological modeling and prediction. Ecology 88: 243–251.PubMedCrossRefGoogle Scholar
  15. Degerman, E., J. Hammar, P. Nyberg & G. Svärdson, 2001. Human impact on the fish diversity in the four largest lakes of Sweden. Ambio 8: 522–528.Google Scholar
  16. Dodson, S., A. L. Newman, S. Will-Wolf, M. L. Alexander, M. P. Woodford & S. Van Egeren, 2007. The relationship between zooplankton community structure and lake characteristics in temperate lakes (Northern Wisconsin, USA). Journal of Plankton Research 31: 93–100.CrossRefGoogle Scholar
  17. Eklöv, P., 1997. Effects of habitat complexity and prey abundance on the spatial and temporal distribution of perch (Perca fluviatilis) and pike (Esox lucius L.). Canadian Journal of Fisheries and Aquatic Sciences 54: 1520–1531.Google Scholar
  18. Elith, J., J. R. Leathwick & T. Hastie, 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–813.PubMedCrossRefGoogle Scholar
  19. Everett, R. A. & G. M. Ruiz, 1993. Coarse woody debris as a refuge from predation in aquatic communities. Oecologia 93: 475–486.CrossRefGoogle Scholar
  20. Francis, T. B. & D. E. Schindler, 2006. Degradation of littoral habitats by residential development: woody debris in lakes of the Pacific Northwest and Midwest, United States. Ambio 35(6): 274–280.PubMedCrossRefGoogle Scholar
  21. Frid, A. & L. Dill, 2002. Human-caused disturbance stimuli as a form of predation risk. Conservation Ecology 6.
  22. Gabel, F., X. F. Garcia, I. Schnauder & M. T. Pusch, 2012. Effects of ship-induced waves on littoral benthic invertebrates. Freshwater Biology 57(12): 2425–2435.CrossRefGoogle Scholar
  23. Gaeta, J. W., M. J. Guarascio, G. G. Sass & S. R. Carpenter, 2011. Lakeshore residential development and growth of largemouth bass (Micropterus salmoides): a cross-lakes comparison. Ecology of Freshwater Fish 20: 92–101.CrossRefGoogle Scholar
  24. Gasith, A., 1991. Can littoral resources influence ecosystem processes in large deep lakes? Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 1073–1076.Google Scholar
  25. Gélinas, M. & B. Pinel-Alloul, 2008. Summer depth selection in crustacean zooplankton in nutrient-poor boreal lakes is affected by recent residential development. Freshwater Biology 53: 2438–2454.CrossRefGoogle Scholar
  26. Goforth, R. R. & S. M. Carman, 2009. Multiscale relationships between Great Lakes nearshore fish communities and anthropogenic shoreline factors. Journal of Great Lakes Research 35: 215–223.CrossRefGoogle Scholar
  27. Gonzales-Abraham, C. E., C. Volker, V. C. Radeloff, T. J. Hawbaker, R. B. Hammer, S. I. Stewart & M. K. Clayton, 2007. Patterns of houses and habitat loss from 1937 to 1999 in Northern Wisconsin, USA. Ecological Applications 17: 2011–2023.CrossRefGoogle Scholar
  28. Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell, G. W. Lienkaemper, K. Cromack, Jr. & K. W. Cummins, 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133–302.Google Scholar
  29. Hecky, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14(4): 631–653.CrossRefGoogle Scholar
  30. Helmus, M. R. & G. G. Sass, 2008. The rapid effects of a whole-lake reduction of coarse woody debris on fish and benthic macroinvertebrates. Freshwater Biology 53: 1423–1433.CrossRefGoogle Scholar
  31. Hölker, F., S. S. Haertel, S. Steiner & T. Mehner, 2002. Effects of piscivore-mediated habitat use on growth, diet and zooplankton consumption of roach: an individual-based modelling approach. Freshwater Biology 47: 2345–2358.CrossRefGoogle Scholar
  32. Jennings, M. J., M. A. Bozek, G. R. Hatzenbeler, E. E. Emmons & M. D. Staggs, 1999. Cumulative effects of incremental shoreline habitat modification on fish assemblages in north temperate lakes. North American Journal of Fisheries Management 19: 18–27.CrossRefGoogle Scholar
  33. Jennings, M. J., E. E. Emmons, G. R. Hatzenbeler, C. Edwards & M. A. Bozek, 2003. Is littoral habitat affected by residential development and land use in watersheds of Wisconsin lakes? Lake and Reservoir Management 19: 272–279.CrossRefGoogle Scholar
  34. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.CrossRefGoogle Scholar
  35. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a nutrient gradient. Freshwater Biology 45: 201–219.CrossRefGoogle Scholar
  36. Johansson, L., 1987. Experimental evidence for interactive habitat segregation between roach (Rutilus rutilus) and rudd (Scardinius erythrophthalmus). Oecologia 73: 21–27.CrossRefGoogle Scholar
  37. Jüttner, F., D. Backhaus, U. Matthias, U. Essers, R. Greiner & B. Mahr, 1995. Emissions of two- and four-stroke outboard engines – II. Impact on water quality. Water Research 29: 1983–1987.CrossRefGoogle Scholar
  38. Kahl, U., S. Hülsmann, R. Radke & J. Benndorf, 2008. The impact of water level fluctuations on the year class strength of roach: implications for fish stock management. Limnologica 38: 258–268.CrossRefGoogle Scholar
  39. Karsson, J. & P. Byström, 2005. Littoral energy mobilization dominates energy supply for top consumers in subarctic lakes. Limnology and Oceanography 50: 538–543.CrossRefGoogle Scholar
  40. Lauridsen, T. L. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Archiv für Hydrobiologie 137: 167–176.Google Scholar
  41. Lawa, 1998. Gewässerbewertung – stehende Gewässer. Länderarbeitsgemeinschaft Wasser, Kulturbuchverlag, Berlin.Google Scholar
  42. Lewin, W. C., N. Okun & T. Mehner, 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biology 4: 410–424.CrossRefGoogle Scholar
  43. Liddle, M. J. & H. R. A. Scorgie, 1980. The effects of recreation on freshwater plants and animals: a review. Biological Conservation 17: 183–206.CrossRefGoogle Scholar
  44. Lynch, W. E. & D. L. Johnson, 1989. Influences of interstice size, shade, and predators on the use of artificial structures by bluegills. North American Journal of Fisheries Management 9: 219–225.CrossRefGoogle Scholar
  45. Marburg, A. E., M. G. Turner & T. K. Kratz, 2006. Natural and anthropogenic variation in coarse wood among and within lakes. Journal of Ecology 94: 558–568.CrossRefGoogle Scholar
  46. Mehner, T., M. Diekmann, U. Brämick & R. Lemcke, 2005. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshwater Biology 50: 70–85.CrossRefGoogle Scholar
  47. Naiman, R. J. & H. Décamps, 1997. The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics 28: 621–658.CrossRefGoogle Scholar
  48. Nate, N., M. Bozek, M. J. Hansen & S. W. Hewett, 2000. Variation in walleye abundance with lake size and recruitment source. North American Journal of Fisheries Management 20: 119–126.CrossRefGoogle Scholar
  49. O’Toole, A. C., K. C. Hanson & S. J. Cooke, 2009. The effect of shoreline recreational angling activities on aquatic and riparian habitat within an urban environment: implications for conservation and management. Environmental Management 44: 324–334.PubMedCrossRefGoogle Scholar
  50. Okun, N. & T. Mehner, 2005. Distribution and feeding of juvenile fish on invertebrates in littoral reed (Phragmites) stands. Ecology of Freshwater Fish 14: 139–149.CrossRefGoogle Scholar
  51. Olden, J. D. & D. A. Jackson, 2001. Fish-habitat relationships in lakes: gaining predictive and explanatory insight by using artificial neural networks. Transactions of the American Fisheries Society 130: 878–897.CrossRefGoogle Scholar
  52. Olin, M., M. Rask, J. Ruuhijärvi, M. Kurkilahti, P. Ala-Opas & O. Ylönen, 2002. Fish community structure in mesotrophic and eutrophic lakes of southern Finland: the relative abundances of percids and cyprinids along a trophic gradient. Journal of Fish Biology 60: 593–612.CrossRefGoogle Scholar
  53. Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1991. Shifts in fish communities along the productivity gradient of temperate lakes – patterns and the importance of size-structured interactions. Journal of Fish Biology 38: 281–293.CrossRefGoogle Scholar
  54. Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.CrossRefGoogle Scholar
  55. Quantum GIS Development Team, 2011. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project.
  56. R Development Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  57. Radomski, P. & T. J. Goeman, 2001. Consequences of human lakeshore development on emergent and floating-leaf vegetation abundance. North American Journal of Fisheries Management 21: 46–61.CrossRefGoogle Scholar
  58. Randall, R. G., C. K. Minns, V. W. Cairns & J. E. Moore, 1996. The relationship between an index of fish production and submerged macrophytes and other habitat features at three littoral areas in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 53(Suppl. 1): 35–44.CrossRefGoogle Scholar
  59. Ridgeway, G., 2004. Generalized Boosted Models: a guide to the gbm package.Google Scholar
  60. Rosenberger, E. E., S. E. Hampton, S. C. Fradkin & B. P. Kennedy, 2008. Effects of shoreline development on the nearshore environment in large deep oligotrophic lakes. Freshwater Biology 53: 1673–1691.CrossRefGoogle Scholar
  61. Savino, J. F. & R. A. Stein, 1982. Behavior of fish predators and their prey: habitat choice between open water and dense vegetation. Environmental Biology of Fishes 24: 287–293.CrossRefGoogle Scholar
  62. Scheuerell, M. D. & D. E. Schindler, 2004. Changes in the spatial distribution of fishes in lakes along a residential development gradient. Ecosystems 7: 98–106.CrossRefGoogle Scholar
  63. Schiemer, F., M. Zalewski & J. E. Thorpe, 1995. Land/inland water ecotones: intermediate habitats critical for conservation and management. Hydrobiologia 303: 259–264.CrossRefGoogle Scholar
  64. Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.CrossRefGoogle Scholar
  65. Schindler, D. E., S. I. Geib & M. R. Williams, 2000. Patterns of fish growth along a residential development gradient in North temperate lakes. Ecosystems 3: 229–237.CrossRefGoogle Scholar
  66. Sih, A., G. Englund & D. Wooster, 1998. Emergent impacts of multiple predators on prey. Trends in Ecology and Evolution 13: 350–355.PubMedCrossRefGoogle Scholar
  67. Smokorowski, K. E. & T. C. Pratt, 2007. Effect of a change in physical structure and cover on fish and fish habitat in freshwater ecosystems – a review and meta-analysis. Environmental Reviews 15: 15–41.CrossRefGoogle Scholar
  68. Søndergaard, M., E. Jeppesen & J. P. Jensen, 2005. Pond or lake: does it make any difference? Archiv für Hydrobiologie 162: 143–165.CrossRefGoogle Scholar
  69. Strayer, D. L. & S. E. G. Findlay, 2010. Ecology of freshwater shore zones. Aquatic Sciences 72: 127–163.CrossRefGoogle Scholar
  70. Sukopp, H. & B. Markstein, 1989. Changes of the reed beds along the Berlin Havel, 1962-1987. Aquatic Botany 35: 27–39.CrossRefGoogle Scholar
  71. Sutela, T., T. Vehanen & M. Rask, 2011. Assessment of the ecological status of regulated lakes: stressor-specific metrics from littoral fish assemblages. Hydrobiologia 675: 55–64.CrossRefGoogle Scholar
  72. Taillon, D. & M. Fox, 2004. The influence of residential and cottage development on littoral zone fish communities in a mesotrophic north temperate lake. Environmental Biology of Fishes 71: 275–285.CrossRefGoogle Scholar
  73. Trial, P. F., F. P. Gelwick & M. A. Webb, 2001. Effects of shoreline urbanization on littoral fish assemblages. Journal of Lake and Reservoir Management 17: 127–138.CrossRefGoogle Scholar
  74. Vadeboncoeur, Y., D. M. Lodge & S. R. Carpenter, 2001. Whole-lake fertilization effects on the distribution of primary production between benthic and pelagic habitats. Ecology 82: 1065–1077.CrossRefGoogle Scholar
  75. Vadeboncoeur, Y., M. J. Vander Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. BioScience 52: 44–54.CrossRefGoogle Scholar
  76. Vadeboncoeur, Y., E. Jeppesen, J. Vander Zanden, H.-H. Schierup, L. Christofferson & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.CrossRefGoogle Scholar
  77. Vadeboncoeur, Y., G. Peterson, M. J. Vander Zanden & J. Kalff, 2008. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89: 2542–2552.PubMedCrossRefGoogle Scholar
  78. Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.CrossRefGoogle Scholar
  79. Walsh, S. E., P. A. Soranno & D. T. Rutledge, 2003. Lakes, wetlands, and streams as predictors of land use/cover distribution. Environmental Management 31: 198–214.PubMedCrossRefGoogle Scholar
  80. Werner, E. E. & D. J. Hall, 1988. Ontogenetic habitat shifts in bluegill: the foraging rate-predation risk trade-off. Ecology 69: 1352–1366.CrossRefGoogle Scholar
  81. Wetzel, R. G., 1990. Land-water interfaces: metabolic and limnological regulators. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 6–24.Google Scholar
  82. Wysocki, L. E., J. P. Dittami & F. Ladich, 2006. Ship noise and cortisol secretion in European freshwater fishes. Biological Conservation 128: 501–508.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • W.-C. Lewin
    • 1
    Email author
  • T. Mehner
    • 2
  • D. Ritterbusch
    • 1
  • U. Brämick
    • 1
  1. 1.Institute of Inland FisheriesPotsdamGermany
  2. 2.Department 4, Biology and Ecology of FishesLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany

Personalised recommendations