Advertisement

Hydrobiologia

, Volume 737, Issue 1, pp 183–200 | Cite as

Influence of Potamogeton pectinatus and microphytobenthos on benthic metabolism, nutrient fluxes and denitrification in a freshwater littoral sediment in an agricultural landscape: N assimilation versus N removal

  • Daniele NizzoliEmail author
  • David T. Welsh
  • Daniele Longhi
  • Pierluigi Viaroli
PLANTS IN HYDROSYSTEMS

Abstract

The influence of Potamogeton pectinatus colonisation on benthic nitrogen dynamics was studied in the littoral zone of a lowland pit lake with high nitrate concentration (~200 μM). Our hypothesis was that in aquatic environments where nitrogen availability is not limiting, colonisation by rooted macrophytes changes the dynamics of the benthic nitrogen cycle, stimulating N assimilation and denitrification and increasing the system capacity to take up external nitrogen loads. To test this hypothesis, we quantified and compared seasonal variations of light and dark benthic metabolism, dissolved inorganic nitrogen (DIN) fluxes, denitrification and N assimilation rates in an area colonised by P. pectinatus and a reference site colonised by microphytobenthos. In both areas, the benthic system was net autotrophic and a sink for DIN (2,241–2,644 mmol m−2 y−1). Plant colonisation increased nitrogen losses via denitrification by 30% compared to the unvegetated area. In contrast to what is generally observed in coastal marine systems, where the presence of rooted macrophytes limits denitrification rates, under the very high nitrate concentrations in the studied lake, both denitrification (1,237–1,570 mmol m−2 y−1) and N assimilation (1,039–1,095 mmol m−2 y−1) played important and comparable roles in the removal of DIN from the water column.

Keywords

Denitrification Nitrogen assimilation Rooted macrophytes Microphytobenthos Shallow freshwater environments Pit lakes 

Notes

Acknowledgments

This study was supported with funding from Italian Ministry of University and Research, Project PRIN 428 2008, ‘Nitrogen loads in the Po river basin: biogeochemical processes, transformations and effects in lowland reaches, transitional and coastal waters’ and by Bassanetti s.r.l. (Monticelli d’Ongina, Piacenza). The authors thank Emanuele Emani and Claudio Bassanetti that supported the organisation of this study.

References

  1. APHA, 1998. Standard Methods for the Examination of Water and Wastewaters, 20th ed. APHA, Washington, DC.Google Scholar
  2. Bartoli, M., D. Nizzoli, G. Castaldelli & P. Viaroli, 2008. Community metabolism and buffering capacity of nitrogen in a Ruppia cirrhosa meadow. Journal of Experimental Marine Biology and Ecology 360: 21–30.CrossRefGoogle Scholar
  3. Bower, C. E. & T. H. Hansen, 1980. A salicylate–hypochlorite method for determining ammonia in seawater. Canadian Journal of Fisheries and Aquatic Science 37: 794–798.CrossRefGoogle Scholar
  4. Burgin, A. J. & S. K. Hamilton, 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5: 89–96.CrossRefGoogle Scholar
  5. Burgin, A. J., J. G. Lazar, P. M. Groffman, A. J. Gold & D. Q. Kellogg, 2012. Balancing nitrogen retention ecosystem services and greenhouse gas disservices at the landscape scale. Ecological Engineering. doi: 10.1016/j.ecoleng.2012.05.003.Google Scholar
  6. Caffrey, J. M. & W. M. Kemp, 1992. Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments. Limnology and Oceanography 37: 1483–1495.CrossRefGoogle Scholar
  7. Canfield, D. E., B. Thamdrup & E. Kristensen, 2005. Aquatic geomicrobiology. In Southward, A. J., P. A. Tyler, C. M. Young & L. A. Fuiman (eds), Advances in Marine Biology, Vol. 48. Elsevier Academic Press, Amsterdam: 640 pp.Google Scholar
  8. Cattaneo, A. & J. Kalff, 1980. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophyte beds. Limnology and Oceanography 25: 280–289.CrossRefGoogle Scholar
  9. Christensen, P. B. & J. Sørensen, 1986. Temporal variation of denitrification activity in plant-covered, littoral sediment from Lake Hampen, Denmark. Applied and Environmental Microbiology 51: 1174–1179.PubMedCentralPubMedGoogle Scholar
  10. Dalsgaard, T., P. B. Christensen, S. Rysgaard & N. Risgaard-Petersen, 1999. Nitrogen removal in Danish coastal waters: importance and regulation (in Danish). In Lomstein B. A., (ed.), Marine environments into the millenium. Olsen & Olsen, Fredensborg, pp 102–118.Google Scholar
  11. David, M. B., L. G. Wall, T. V. Royer & J. L. Tank, 2006. Denitrification and the nitrogen budget of a reservoir in an agricultural landscape. Ecological Applications 16: 2177–2190.PubMedCrossRefGoogle Scholar
  12. De Jonge, V. N., 1980. Fluctuations in the organic carbon to chlorophyll a ratios for estuarine benthic diatom populations. Marine Ecology Progress Series 2: 345–353.CrossRefGoogle Scholar
  13. den Heyer, C. & J. Kalff, 1998. Organic matter mineralization rates in sediments: a within- and among-lake study. Limnology and Oceanography 43: 695–705.CrossRefGoogle Scholar
  14. Dunn, R. J. K., D. T. Welsh, M. A. Jordan, N. J. Waltham, C. J. Lemckert & P. R. Teasdale, 2012. Benthic metabolism and nitrogen dynamics in a sub-tropical coastal lagoon: microphytobenthos stimulate nitrification and nitrate reduction through photosynthetic oxygen evolution. Estuarine Coastal and Shelf Science 113: 272–282.CrossRefGoogle Scholar
  15. Eriksson, P. G. & S. E. B. Weisner, 1999. An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems. Limnology and Oceanography 44: 1993–1999.CrossRefGoogle Scholar
  16. Galloway, J. N., J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth, E. B. Cowling & B. J. Cosby, 2003. The nitrogen cascade. BioScience 53: 341–356.CrossRefGoogle Scholar
  17. Hansen, J. W., A. U. Pedersen, J. Berntsen, I. S. Rønbøg, L. S. Hansen & B. A. Lomstein, 2000. Photosynthesis, respiration, and nitrogen uptake by different compartments of a Zostera marina community. Aquatic Botany 66: 281–295.CrossRefGoogle Scholar
  18. Kantrud, H. A., 1990. Sago Pondweed (Potamogeton pectinatus L.): A Literature Review. U.S. Fish and Wildlife Service, Fish and Wildlife Resource Publication, 176, Washington, DC: 89 pp.Google Scholar
  19. Karjalainen, H., G. Stefansdottir, L. Tuominen & T. Kairesalo, 2001. Do submersed plants enhance microbial activity in sediment? Aquatic Botany 69: 1–13.CrossRefGoogle Scholar
  20. Kreiling, R. M., W. B. Richardson, J. C. Cavanaugh & L. A. Bartsch, 2011. Summer nitrate uptake and denitrification in an upper Mississippi River Backwater Lake: the role of rooted aquatic vegetation. Biogeochemistry 104: 309–324.CrossRefGoogle Scholar
  21. Lorenzen, C. J., 1967. Determination of chlorophyll and phaeo-pigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.CrossRefGoogle Scholar
  22. Matheson, F. E., M. L. Nguyen, A. B. Cooper, T. P. Burt & D. C. Bull, 2002. Fate of 15N-nitrate in unplanted, planted and harvested riparian wetland soil microcosms. Ecological Engineering 19: 249–264.CrossRefGoogle Scholar
  23. McClain, M. E., E. W. Boyer, C. L. Dent, S. E. Gergel, N. B. Grimm, P. M. Groffman, S. C. Hart, J. W. Harvey, C. A. Johnston, E. Mayorga, W. H. McDowell & G. Pinay, 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6: 301–312.CrossRefGoogle Scholar
  24. Megonigal, J., M. Hines & P. Visscher, 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. In Schlesinger, W. H. (ed.), Biogeochemistry. Elsevier-Pergamon, Oxford: 317–424.Google Scholar
  25. Nielsen, L. P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. Federation of European Microbiological Societies, Microbiology Ecology 86: 357–362.CrossRefGoogle Scholar
  26. Nielsen, L. B., K. Finster, D. T. Welsh, A. P. Donnelly, R. A. Herbert, R. de Wit & B. A. Lomstein, 2001. Sulfate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina stricta meadows. Environmental Microbiology 3: 63–71.PubMedCrossRefGoogle Scholar
  27. Nielsen, S. L., G. T. Banta & M. F. Pedersen, 2004. Estuarine Nutrient Cycling: The Influence of Primary Producers, Vol. 2. Kluwer, Dordrecht: 263–280.Google Scholar
  28. Nizzoli, D., D. T. Welsh, M. Bartoli & P. Viaroli, 2005. Impacts of mussel (Mytilis galloprovincialis) farming on oxygen consumption and nutrient recycling in a eutrophic coastal lagoon. Hydrobiologia 550: 183–198.CrossRefGoogle Scholar
  29. Nizzoli, D., E. Carraro, V. Nigro & P. Viaroli, 2010. Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Water Research 44: 2715–2724.PubMedCrossRefGoogle Scholar
  30. Nõges, T., H. Luup & T. Feldmann, 2009. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjärv) in Estonia. Aquatic Ecology 44: 83–92.CrossRefGoogle Scholar
  31. Ottosen, L. D. M., N. Risgaard-Petersen & L. P. Nielsen, 1999. Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes. Aquatic Microbial Ecology 19: 81–91.CrossRefGoogle Scholar
  32. Palmer, M. A. & S. Filoso, 2009. Restoration of ecosystem services for environmental markets. Science 325: 575–576.PubMedCrossRefGoogle Scholar
  33. Piña-Ochoa, E. & M. Álvarez-Cobelas, 2006. Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81: 111–130.CrossRefGoogle Scholar
  34. Pinardi, M., M. Bartoli, D. Longhi, U. Marzocchi, A. Laini, C. Ribaudo & P. Viaroli, 2009. Benthic metabolism and denitrification in a river reach: a comparison between vegetated and bare sediments. Journal of Limnology 68: 133–145.CrossRefGoogle Scholar
  35. Pind, A., N. Risgaard-Petersen & N. P. Revsbech, 1997. Denitrification and microphytobenthic NO3- consumption in a Danish lowland stream: diurnal and seasonal variation. Aquatic Microbial Ecology 12: 275–284.Google Scholar
  36. Racchetti, E., M. Bartoli, C. Ribaudo, D. Longhi, L. Brito, M. Naldi, P. Iacumin & P. Viaroli, 2010. Short term changes in pore water chemistry in river sediments during the early colonization by Vallisneria spiralis. Hydrobiologia 652: 127–137.CrossRefGoogle Scholar
  37. Reddy, K. R., W. H. Patrick & C. W. Lindau, 1989. Nitrification–denitrification at the plant root–sediment interface in wetlands. Limnology and Oceanography 34: 1004–1013.CrossRefGoogle Scholar
  38. Revsbech, N., J. Jacobsen & L. P. Nielsen, 2005. Nitrogen transformations in microenvironments of river beds and riparian zones. Ecological Engineering 24: 447–455.CrossRefGoogle Scholar
  39. Risgaard-Petersen, N., 2003. Coupled nitrification–denitrification in autotrophic and heterotrophic estuarine sediments: on the influence of benthic microalgae. Limnology and Oceanography 48: 93–105.CrossRefGoogle Scholar
  40. Risgaard-Petersen, N., 2004. Denitrification. In Nielsen, S. L., G. T. Banta & M. F. Pedersen (eds), Estuarine Nutrient Cycling: The Influence of Primary Producers, Vol. 2. Kluwer, Dordrecht: 263–280.CrossRefGoogle Scholar
  41. Risgaard-Petersen, N. & K. Jensen, 1997. Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia Dortmanna L. Limnology and Oceanography 42: 529–537.CrossRefGoogle Scholar
  42. Risgaard-Petersen, N. & L. D. M. Ottosen, 2000. Nitrogen cycling in two temperate Zostera marina beds: seasonal variation. Marine Ecology Progress Series 198: 93–107.CrossRefGoogle Scholar
  43. Risgaard-Petersen, N. & S. Rysgaard, 1995. Nitrate reduction in sediments and waterlogged soil measured by 15N techniques. In Alef, K. & P. Nannipieri (eds), Methods in Applied Soil Microbiology. Academic Press, London: 287–310.Google Scholar
  44. Risgaard-Petersen, N., S. Rysgaard, L. P. Nielsen & N. P. Revsbech, 1994. Diurnal variation of denitrification in sediments colonised by benthic microphytes. Limnology and Oceanography 39: 573–579.CrossRefGoogle Scholar
  45. Risgaard-Petersen, N., T. Dalsgaard, S. Rysgaard, P. B. Christensen, J. Borum, K. McGlathery & L. P. Nielsen, 1998. Nitrogen balance of a temperate eelgrass Zostera marina bed. Marine Ecology Progress Series 174: 281–291.CrossRefGoogle Scholar
  46. Risgaard-Petersen, N., L. P. Nielsen, T. Dalsgaard & R. L. Meyer, 2003. Application of the isotope pairing technique in sediments where ANAMMOX and denitrification coexist. Limnology and Oceanography: Methods 1: 63–73.CrossRefGoogle Scholar
  47. Rysgaard, S., P. B. Christensen & L. P. Nielsen, 1995. Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna. Marine Ecology Progress Series 126: 111–121.CrossRefGoogle Scholar
  48. Sand-Jensen, K., C. Prahl & H. Stokolm, 1982. Oxygen release from roots of submerged aquatic macrophytes. Oikos 38: 349–354.CrossRefGoogle Scholar
  49. Saunders, D. L. & J. Kalff, 2001. Denitrification rates in the sediments of Lake Memphremagog, Canada–USA. Water Research 35: 1897–1904.PubMedCrossRefGoogle Scholar
  50. Schramm, W., E. Gualberto & C. Orosco, 1984. Release of dissolved organic matter from marine tropical reef plants: temperature and desiccation effects. Botanica Marina 27: 71–77.CrossRefGoogle Scholar
  51. Seitzinger, S., J. A. Harrison, J. K. Böhlke, A. F. Bouwman, R. Lowrance, B. Peterson, C. Tobias & G. Van Drecht, 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications 16: 2064–2090.PubMedCrossRefGoogle Scholar
  52. Sokal, R. R. & F. J. Rohlf, 1995. Biometry. W.H. Freeman and Company, New York.Google Scholar
  53. Søndergaard, M., L. Bruun, T. Lauridsen, E. Jeppesen & T. V. Madsen, 1996. The impact of grazing waterfowl on submerged macrophytes: in situ experiments in a shallow eutrophic lake. Aquatic Botany 53: 73–84.CrossRefGoogle Scholar
  54. Sundbäck, K. & A. Miles, 2000. Balance between denitrification and microalgal incorporation of nitrogen in microtidal sediment, NE Kattegat. Aquatic Microbial Ecology 22: 291–300.CrossRefGoogle Scholar
  55. Tavernini, S., D. Nizzoli, G. Rossetti & P. Viaroli, 2009. Trophic state and seasonal dynamics of phytoplankton communities in two sand-pit lakes at different successional stages. Journal of Limnology 68: 217–228.CrossRefGoogle Scholar
  56. Toet, S., L. H. F. A. Huibers, R. S. P. Van Logtestijn & J. T. A. Verhoeven, 2003. Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent. Hydrobiologia 501: 29–44.CrossRefGoogle Scholar
  57. van Wijk, R. J., 1988. Ecological studies on Potamogeton pectinatus L. I. General characteristics, biomass production and life cycles under field conditions. Aquatic Botany 31: 211–258.CrossRefGoogle Scholar
  58. Veraart, A. J. & W. J. J. de Bruijne, 2011. Effects of aquatic vegetation type on denitrification. Biogeochemistry 104: 267–274.CrossRefGoogle Scholar
  59. Verhoeven, J. T. A., B. Arheimer, C. Yin & M. M. Hefting, 2006. Regional and global concerns over wetlands and water quality. Trends in Ecology & Evolution 21: 96–103.CrossRefGoogle Scholar
  60. Vestergaard, O. & K. Sand-Jensen, 2000. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquatic Botany 67: 85–107.CrossRefGoogle Scholar
  61. Viaroli, P. & R. R. Christian, 2003. Description of trophic status of an eutrophic coastal lagoon through potential oxygen production and consumption: defining hyperautotrophy and dystrophy. Ecological Indicators 3: 237–250.CrossRefGoogle Scholar
  62. Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger & D. G. Tilman, 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 5: 85.Google Scholar
  63. Welsh, D. T., 2000. Nitrogen fixation in seagrass meadows: regulation, plant–bacteria interactions and significance to primary productivity. Ecology Letters 3: 58–71.CrossRefGoogle Scholar
  64. Welsh, D. T., P. K. Wellsbury, S. Bourguès, R. de Wit & R. A. Herbert, 1996. Relationship between porewater organic carbon content, sulphate reduction and nitrogen fixation (acetylene reduction) in the rhizosphere of Zostera noltii. Hydrobiologia 329: 175–183.CrossRefGoogle Scholar
  65. Welsh, D. T., M. Bartoli, D. Nizzoli, G. Castaldelli, S. A. Riou & P. Viaroli, 2000. Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Marine Ecology Progress Series 208: 65–77.CrossRefGoogle Scholar
  66. Wetzel, R. G., 1990. Land water interfaces: metabolic and limnological regulators, Verhein. International Verein Limnology 24: 6–24.Google Scholar
  67. Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems, 3rd ed. Academic Press, London: 1006 pp.Google Scholar
  68. Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses, 2nd ed. Springer, New York: 391 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Daniele Nizzoli
    • 1
    Email author
  • David T. Welsh
    • 2
  • Daniele Longhi
    • 1
  • Pierluigi Viaroli
    • 1
  1. 1.Department of Life SciencesUniversity of ParmaParmaItaly
  2. 2.School of Environment and Environmental Futures CentreGriffith UniversityBundallAustralia

Personalised recommendations