Advertisement

Hydrobiologia

, Volume 737, Issue 1, pp 99–110 | Cite as

Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance

  • Irmgard BlindowEmail author
  • Anders Hargeby
  • Sabine Hilt
PLANTS IN HYDROSYSTEMS Review Paper

Abstract

A number of mechanisms result in a feedback between water clarity and macrophytes and, consequently, the occurrence of alternative stable states in shallow lakes. We hypothesize that bottom-up mechanisms and interactions within the benthic food web are more important in a charophyte-dominated clear-water state, while top-down mechanism and interactions in the planktonic food web prevail at angiosperm dominance. Charophytes, which dominate at lower nutrient concentrations and develop higher densities than most angiosperms, can have a higher influence on sedimentation, resuspension, and water column nutrients. During dominance of dense submerged vegetation like charophytes, zooplankton can be hampered by low food quality and quantity and by high predation pressure from juvenile fish, which in turn are favoured by the high refuge potential of this vegetation. Grazing pressure from zooplankton on phytoplankton can therefore be low in charophytes, but the main feedback in angiosperm-dominated ecosystems. Charophytes offer a higher surface than most angiosperms to periphyton, which favors benthic invertebrates. These support macrophytes by grazing periphyton and constitute a central link in a trophic cascade from fish to periphyton and macrophytes. To test these hypotheses, more experiments and field measurements comparing the effect of charophytes and angiosperms on water clarity are needed.

Keywords

Alternative stable state Angiosperms Characeae Macroinvertebrates Shallow lakes Zooplankton 

References

  1. Anthoni, U., C. Christophersen, J. Madsen, S. Wium-Andersen & N. Jacobsen, 1980. Biologically active sulphur compounds from the green algae Chara globularis. Phytochemistry 19: 1228–1229.Google Scholar
  2. Bachmann, R. W., M. V. Hoyer & D. E. Canfield Jr, 1999. The restoration of Lake Apopka in relation to alternative stable states. Hydrobiologia 394: 219–232.Google Scholar
  3. Bakker, E. S., E. van Donk, S. A. J. Declerck, N. R. Helmsing, B. Hidding & B. A. Nolet, 2010. Effect of macrophyte community composition and nutrient enrichment on plant biomass and algal blooms. Basic and Applied Ecology 11: 432–439.Google Scholar
  4. Bakker, E. S., J. M. Sarneel, R. D. Gulati, Z. Liu & E. van Donk, 2013. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710: 23–37.Google Scholar
  5. Barko, J. W. & W. F. James, 1998. Effects of submerged macrophytes on nutrient dynamics, sedimentation, and resuspension. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 197–214.Google Scholar
  6. Beklioglu, M. & B. Moss, 1996a. Mesocosm experiments on the interaction of sediment influence, fish predation and aquatic plants with the structure of phytoplankton and zooplankton communities. Freshwater Biology 36: 315–325.Google Scholar
  7. Beklioglu, M. & B. Moss, 1996b. Existence of a macrophyte-dominated clearwater state over a very wide range of nutrient concentrations in a small shallow lake. Hydrobiologia 337: 93–106.Google Scholar
  8. Bengtsson, L., T. Hellström & L. Rakoczi, 1990. Redistribution of sediments in three Swedish lakes. Hydrobiologia 192: 167–181.Google Scholar
  9. Benoy, G. A. & J. Kalff, 1999. Sediment accumulation and Pb burdens in submerged macrophyte beds. Limnology & Oceanography 44: 1081–1090.Google Scholar
  10. Berger, J. & M. Schagerl, 2003. Allelopathic activity of Chara aspera. Hydrobiologia 501: 109–115.Google Scholar
  11. Berger, J. & M. Schagerl, 2004. Allelopathic activity of Characeae. Biologia 59: 9–15.Google Scholar
  12. Blindow, I., 1992. Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology 28: 15–27.Google Scholar
  13. Blindow, I. & M. J. M. Hootsmans, 1991. Allelopathic effects from Chara spp. on two species of unicellular green algae. In Hootsmans, M. J. M. & J. E. Vermaat (eds), Macrophytes, A key to Understanding Changes Caused by Eutrophication in Shallow Freshwater Ecosystems: 139–144. International Institute for Hydraulic and Environmental Engineering, The Netherlands. IHE Report Series 21.Google Scholar
  14. Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.Google Scholar
  15. Blindow, I., A. Hargeby, B. M. A. Wagner & G. Andersson, 2000. How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwater Biology 44: 185–197.Google Scholar
  16. Blindow, I., A. Hargeby & G. Andersson, 2002. Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquatic Botany 72: 315–334.Google Scholar
  17. Boström, B. & K. Pettersson, 1982. Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia 92: 415–429.Google Scholar
  18. Brönmark, C., 1985. Interactions between macrophytes, epiphytes and herbivores: an experimental approach. Oikos 45: 26–30.Google Scholar
  19. Brönmark, C., 1989. Interactions between epiphytes, macrophytes and freshwater snails: a review. Journal of Molluscan Studies 55: 299–311.Google Scholar
  20. Brönmark, C., 1994. Effects of tench and perch on interactions in a freshwater, benthic food chain. Ecology 75: 1818–1828.Google Scholar
  21. Brönmark, C. & J. E. Vermaat, 1998. Complex fish-snail-epiphyton interactions and their effects on submerged freshwater macrophytes. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 47–68.Google Scholar
  22. Brönmark, C. & S. E. B. Weisner, 1992. Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes—an alternative mechanism. Hydrobiologia 243(244): 293–301.Google Scholar
  23. Carpenter, S. R., 1981. Submerged vegetation: an internal factor in lake ecosystem succession. American Naturalist 118: 372–383.Google Scholar
  24. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.Google Scholar
  25. Casanova, M. T., M. D. de Winton & J. S. Clayton, 2003. Do charophytes clear turbid water? Verhandlungen Internationale Vereiningung für Theroretische und Angewandte Limnologie 26: 1440–1443.Google Scholar
  26. Cattaneo, A., 1987. Periphyton in lakes of different trophy. Canadian Journal of Fisheries and Aquatic Sciences 44: 296–303.Google Scholar
  27. Crawford, S. A., 1977. Chemical, physical and biological changes associated with Chara succession. Hydrobiologia 55: 209–218.Google Scholar
  28. Crowder, L. B. & W. E. Cooper, 1979. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.Google Scholar
  29. De Backer, S., S. Van Onsem & L. Triest, 2010. Influence of submerged vegetation and fish abundance on water clarity in peri-urban eutrophic ponds. Hydrobiologia 656: 255–267.Google Scholar
  30. Declerck, S. A. J., E. S. Bakker, B. van Lith, A. Kersbergen & E. van Donk, 2011. Effects of nutrient additions and macrophyte composition on invertebrate community assembly and diversity in experimental ponds. Basic and Applied Ecology 12: 466–475.Google Scholar
  31. Diehl, S., 1988. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73: 1646–1661.Google Scholar
  32. Diehl, S. & R. Kornijow, 1998. Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 24–46.Google Scholar
  33. Dorenbosch, M. & E. S. Bakker, 2011. Herbivory in omnivorous fishes: effect of plant secondary metabolites and prey stoichiometry. Freshwater Biology 56: 1783–1797.Google Scholar
  34. Duarte, C. & J. Kalff, 1990. Biomass density and the relationship between submerged macrophyte biomass and plant growth form. Hydrobiologia 196: 17–23.Google Scholar
  35. Dugdale, T. M., B. J. Hicks, M. De Winton & A. Taumopeau, 2006. Fish exclosures versus intensive fishing to restore charophytes in a shallow New Zealand lake. Aquatic Conservation: Marine and Freshwater Ecosystems 16: 193–202.Google Scholar
  36. Dvorak, J. & E. P. H. Best, 1982. Macroinvertebrate communities associated with the macrophytes of Lake Vechten: structural and functional relationships. Hydrobiologia 95: 115–126.Google Scholar
  37. Faafeng, B. A. & M. Mjelde, 1998. Clear and turbid water in shallow Norwegian lakes related to submerged vegetation. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 361–368.Google Scholar
  38. Forsberg, C., 1965. Ecological and physiological studies of charophytes. Abstract of Uppsala Dissertations in Science 53: 1–10.Google Scholar
  39. Gregg, W. W. & F. Rose, 1985. Influences of aquatic macrophytes on invertebrate community structure, guild structure, and microdistribution in streams. Hydrobiologia 128: 45–56.Google Scholar
  40. Grimm, M. P. & J. J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200(201): 557–566.Google Scholar
  41. Gross, E. M., S. Hilt, P. Lombardo & G. Mulderij, 2007. Searching for allelopathy in action—state of the art and open questions. Hydrobiologia 584: 77–88.Google Scholar
  42. Hamilton, D. P. & S. F. Mitchell, 1996. An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 317: 209–220.Google Scholar
  43. Hann, B. J., 1991. Invertebrate grazer–periphyton interactions in a eutrophic marsh pond. Freshwater Biology 26: 87–96.Google Scholar
  44. Hanson, M. A. & M. G. Butler, 1994. Responses to food web manipulation in a shallow waterfowl lake. Hydrobiologia 279(280): 457–466.Google Scholar
  45. Hargeby, A., 1990. Macrophyte associated invertebrates and the effect of habitat permanence. Oikos 57: 338–346.Google Scholar
  46. Hargeby, A., G. Andersson, I. Blindow & S. Johansson, 1994. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279(280): 83–90.Google Scholar
  47. Hargeby, A., I. Blindow & L.-A. Hansson, 2004. Shifts between clear and turbid states in a shallow lake: multi-causal stress from climate, nutrients and biotic interactions. Archiv für Hydrobiologie 161: 433–454.Google Scholar
  48. Hargeby, A., H. Blom, I. Blindow & G. Andersson, 2005. Increased growth and recruitment of piscivorous perch, Perca fluviatilis, during a transient phase of expanding submerged vegetation in a shallow lake. Freshwater Biology 50: 2053–2062.Google Scholar
  49. Hecky, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14: 631–653.Google Scholar
  50. Hidding, B., R. J. Brederveld & B. A. Nolet, 2010. How a bottom-dweller beats the canopy: inhibition of an aquatic weed (Potamogeton pectinatus) by macroalgae (Chara spp.). Freshwater Biology 55: 1758–1768.Google Scholar
  51. Higler, L. W. G., 1975. Analysis of the macrofauna community on Stratiotes vegetation. Verhandlungen der Internationalen Vereinigung für Limnologie 19: 2773–2777.Google Scholar
  52. Hilt, S. & E. M. Gross, 2008. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology 9: 422–432.Google Scholar
  53. Hilt, S., I. Henschke, J. Rücker & B. Nixdorf, 2010. Can submerged macrophytes influence turbidity and trophic state in deep lakes? Suggestions from a case study. Journal of Environmental Quality 39: 725–733.PubMedGoogle Scholar
  54. Hilt, S., R. Adrian, J. Köhler, M. T. Monaghan & C. Sayer, 2013. Clear, crashing, turbid and back—long-term changes of macrophyte assemblages in a shallow lake. Freshwater Biology 58: 2027–2036.Google Scholar
  55. Hough, R. A. & D. A. Putt, 1988. Factors influencing photosynthetic productivity of Chara vulgaris L. in a moderately productive hardwater lake. Journal of Freshwater Ecology 4: 411–418.Google Scholar
  56. Ibelings, B. W., R. Portielje, E. H. R. R. Lammens, R. Noorhuis, M. van den Berg, W. Joosse & M. L. Meijer, 2007. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: lake Veluwe as a case study. Ecosystems 10: 4–10.Google Scholar
  57. Jaschinski, S., D. C. Brepohl & U. Sommer, 2011. The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.): stable isotope and fatty acid analyses. Aquatic Sciences 73: 91–101.Google Scholar
  58. Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, longterm stability and conclusions. Hydrobiologia 200(201): 219–227.Google Scholar
  59. Jeppesen, E., T. Lauridsen, T. Kairesalo & M. Perrow, 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In Jeppesen, E., M. Søndergaard, M. Søndergaard, K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 91–114.Google Scholar
  60. Jeppesen, E., J. P. Jensen, M. Søndergaard & T. Lauridsen, 1999. Trophic dynamics in turbid and clear water lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia 408(409): 217–231.Google Scholar
  61. Jónasson, P. M. & H. Adalsteinsson, 1979. Phytoplankton production in shallow eutrophic Lake Myvatn, Iceland. Oikos 32: 113–138.Google Scholar
  62. Jones, J. I. & C. Sayer, 2003. Does fish–invertebrate–periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167.Google Scholar
  63. Jones, J. I. & S. Waldron, 2003. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshwater Biology 48: 1396–1407.Google Scholar
  64. Jones, J. I., B. Moss & J. O. Young, 1998. The interactions between periphyton, non molluscan invertebrates, and fish in standing freshwaters. In Jeppesen, E., M. Søndergaard, M. Søndergaard, K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 69–90.Google Scholar
  65. Karabin, A., J. Ejsmont-Karabin & R. Kornatowska, 1997. Eutrophication processes in a shallow, macrophyte-dominated lake: factors influencing zooplankton structure and density in Lake Luknajno (Poland). Hydrobiologia 342(343): 401–409.Google Scholar
  66. Körner, S. & T. Dugdale, 2003. Is roach herbivory preventing re-colonization of a shallow lake with submerged macrophytes? Hydrobiologia 506: 497–501.Google Scholar
  67. Krecker, F. H., 1939. A comparative study of the animal populations of certain submerged aquatic plants. Ecology 20: 553–562.Google Scholar
  68. Kuczynska-Kippen, N., 2008. Spatio-temporal segregation of cladocerans within a Chara hispida bed. Journal of Freshwater Ecology 23: 643–650.Google Scholar
  69. Kufel, L. & I. Kufel, 2002. Chara beds acting as nutrient sinks in shallow lakes: a review. Aquatic Botany 72: 249–260.Google Scholar
  70. Kufel, L. & T. Ozimek, 1994. Can Chara control phosphorus cycling in Lake Luknajno (Poland)? Hydrobiologia 275(276): 277–283.Google Scholar
  71. Lauridsen, T. L. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Archiv für Hydrobiologie 137: 161–176.Google Scholar
  72. Lauridsen, T., L. J. Pedersen, E. Jeppesen & Ma. Søndergaard, 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. Journal of Plankton Research 18: 2283–2294.Google Scholar
  73. Lewin, W., N. Okun & T. Mehner, 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biology 49: 410–424.Google Scholar
  74. Liboriussen, L. & E. Jeppesen, 2006. Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biology 51: 95–109.Google Scholar
  75. Marklund, O., I. Blindow & A. Hargeby, 2001. Distribution and diel migration of macroinvertebrates within dense submerged vegetation. Freshwater Biology 46: 913–924.Google Scholar
  76. Meeuwig, J. J., J. B. Rasmussen & R. H. Peters, 1998. Turbid waters and clarifying mussels: their moderation of empirical chl: nutrient relations in estuaries in Prince Edward Island, Canada. Marine Ecology Progress Series 171: 139–150.Google Scholar
  77. Meijer, M.-L, 2000. Biomanipulation in the Netherlands. 15 years of experience. Ph.D. Thesis, University of Wageningen, The Netherlands.Google Scholar
  78. Meijer, M.-L., E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. Lammens, E. van Nes, J. A. van Berkum, G. J. de Jong, B. A. Faafeng & J. P. Jensen, 1994. Long-term responses to fish stock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in the Netherlands and Denmark. Hydrobiologia 275(276): 457–466.Google Scholar
  79. Miller, S. A. & F. D. Provenza, 2007. Mechanisms of resistance of freshwater macrophytes to herbivory by invasive juvenile common carp. Freshwater Biology 52: 39–49.Google Scholar
  80. Moss, B., 1989. Water pollution and the management of ecosystems: a case study of science and scientist. In Grubb, P. J. & J. B. Whittaker (eds), Towards a more exact ecology. Blackwell, Oxford: 401–422.Google Scholar
  81. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–377.Google Scholar
  82. Mulderij, G., E. van Donk & J. G. M. Roelofs, 2003. Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia 491: 261–271.Google Scholar
  83. Mulderij, G., E. van Nes & E. van Donk, 2007. Macrophyte–phytoplankton interactions: the relative importance of allelopathy versus other factors. Ecological Modelling 204: 85–92.Google Scholar
  84. Nepf, H. M. & E. W. Koch, 1999. Vertical secondary flows in submerged plant-like arrays. Limnology & Oceanography 44: 1072–1080.Google Scholar
  85. Nicolle, A., L.-A. Hansson & C. Brönmark, 2010. Habitat structure and juvenile fish ontogeny shape zooplankton spring dynamics. Hydrobiologia 652: 119–125.Google Scholar
  86. Nõges, P., L. Tuvikene, T. Feldmann, I. Tõnno, H. Künnap, H. Luup, J. Salujõe & T. Nõges, 2003. The role of charophytes in increasing water transparency: a case study of two shallow lakes in Estonia. Hydrobiologia 506–509: 567–573.Google Scholar
  87. Okun, N., W. C. Lewin & T. Mehner, 2005. Top-down and bottom-up impacts of juvenile fish in a littoral reed stand. Freshwater Biology 50: 798–812.Google Scholar
  88. Otsuki, A. & R. G. Wetzel, 1972. Coprecipitation of phosphate with carbonates in a marl rich lake. Limnology & Oceanography 17: 763–767.Google Scholar
  89. Pereya-Ramos, E., 1981. The ecological role of Characeae in the lake littoral. Ekologia Polska 29: 167–209.Google Scholar
  90. Perrow, M. R., M.-L. Meijer, P. Dawidowicz & H. Coops, 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342(343): 355–365.Google Scholar
  91. Persson, L. & L. B. Crowder, 1998. Fish–habitat interactions mediated via ontogenetic niche shifts. In Jeppesen, E., M. Søndergaard, M. Søndergaard, K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 3–23.Google Scholar
  92. Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4: 103–126.Google Scholar
  93. Richter, D. & E. M. Gross, 2013. Chara can outcompete Myriophyllum under low phosphorus supply. Aquatic Sciences 75: 457–467.Google Scholar
  94. Samuelsson, G. 1925. Untersuchungen über die höhere Wasserflora von Dalarne. Svenska Växtsociologiska Sällskap Handlingar: 9.Google Scholar
  95. Sayer, C. D., T. A. Davidson & J. I. Jones, 2010. Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton. Freshwater Biology 55: 500–513.Google Scholar
  96. Scheffer, M., 1990. Multiplicity of alternative stable states in freshwater systems. Hydrobiologia 200(201): 475–486.Google Scholar
  97. Scheffer, M., 1998. Ecology of shallow lakes. Chapman and Hall, London.Google Scholar
  98. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.Google Scholar
  99. Scheffer, M., M. S. van den Berg, A. W. Breukelaar, C. P. M. Breukers, H. Coops, R. W. Doef & M.-L. Meijer, 1994. Vegetated areas with clear water in turbid shallow lakes. Aquatic Botany 49: 193–196.Google Scholar
  100. Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.Google Scholar
  101. Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001a. Catastrophic shifts in ecosystems. Nature 413: 591–596.PubMedGoogle Scholar
  102. Scheffer, M., D. Straile, E. H. van Nes & S. H. Hosper, 2001b. Climatic warming causes regime shifts in lake food webs. Limnology & Oceanography 46: 1780–1783.Google Scholar
  103. Schulze, T., U. Baade, H. Dörner, R. Eckmann, S. S. Haertel-Borer, F. Hölker & T. Mehner, 2006. Interactions of residential piscivores with an introduced new predator type in a mesotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 63: 2202–2212.Google Scholar
  104. Siong, K. & T. Asaeda, 2006. Does calcite encrustation in Chara provide a phosphorus nutrient sink? Journal of Environmental Quality 35: 490–494.PubMedGoogle Scholar
  105. Stansfield, J., M. R. Perrow, L. D. Tench, A. J. D. Jowitt & A. A. L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342(343): 229–240.Google Scholar
  106. Ten Winkel, E. H. & J. T. Meulemans, 1984. Effects of cyprinid fish on submerged vegetation. Hydrobiological Bulletin 18: 157–158.Google Scholar
  107. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology & Oceanography 29: 472–486.Google Scholar
  108. Van den Berg, M. S., H. Coops, M.-L. Meijer, M. Scheffer & J. Simons, 1998a. Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, The Netherlands. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 339–352.Google Scholar
  109. Van den Berg, M. S., M. Scheffer & H. Coops, 1998b. The role of Characean algae in the management of eutrophic shallow lakes. Journal of Phycology 34: 750–756.Google Scholar
  110. Van den Berg, M. S., M. Scheffer, E. H. van Nes & H. Coops, 1999. Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 409: 335–342.Google Scholar
  111. Van den Berg, M. S., H. Coops, J. Simons & J. Pilon, 2002. A comparative study of the use of inorganic carbon resources by Chara aspera and Potamogeton pectinatus. Aquatic Botany 72: 219–233.Google Scholar
  112. Van Donk, E. & D. O. Hessen, 1993. Grazing resistance in nutrient-stressed phytoplankton. Oecologia 93: 508–511.Google Scholar
  113. Van Donk, E. & W. J. van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274.Google Scholar
  114. Vander Zanden, J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.Google Scholar
  115. Van Wijk, R. J., 1988. Ecological studies on Potamogeton pectinatus L. I. General characteristics, biomass production and life cycles under field conditions. Aquatic Botany 31: 211–258.Google Scholar
  116. Vermaat, J. E., L. Santamaria & P. J. Roos, 2000. Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Archiv für Hydrobiologie 148: 549–562.Google Scholar
  117. Villena, M. J. & S. Romo, 2007. Effects of nutrients, fish, charophytes and algal sediment recruitment on the phytoplankton ecology of a shallow lake. International Revue of Hydrobiology 92: 626–639.Google Scholar
  118. Winfield, L. J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythrophthalmus, and perch, Perca fluviatilis. Journal of Fish Biology 29: 37–48.Google Scholar
  119. Wium-Andersen, S., U. Anthoni, C. Christophersen & G. Houen, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39: 187–190.Google Scholar
  120. Zhang, T. T., M. He, A. P. Wu & L. W. Nie, 2009. Allelopathic effects of submerged macrophyte Chara vulgaris on toxic Microcystis aeruginosa. Allelopathy Journal 23: 391–402.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Biological Station of HiddenseeUniversity of GreifswaldKlosterGermany
  2. 2.IFM BiologyLinköping UniversityLinköpingSweden
  3. 3.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany

Personalised recommendations