Advertisement

Hydrobiologia

, Volume 731, Issue 1, pp 125–138 | Cite as

Emissions of greenhouse gases from Lake Neusiedl, a shallow steppe lake in Eastern Austria

  • Gerhard SojaEmail author
  • Barbara Kitzler
  • Anna-Maria Soja
EUROPEAN LARGE LAKES III

Abstract

Greenhouse gas emissions of Lake Neusiedl, the westernmost European shallow steppe lake, were analysed to identify differences between the seasons of the years and between different locations in the pelagic zone and reed belt. Emissions of CO2, CH4 and N2O were measured in gas samples that had been recovered from the gas space of floating chambers operated as closed systems. Sampling periods covered all seasons except winter. Scaled up to the whole lake area (320 km2), the diffusive emissions of spring, summer and autumn totalled to about 79,500 t CO2e, disregarding bubble emissions, winter emissions and plant-mediated emissions. The emission sum consisted of about 57,000 t CO2, 760 t CH4, and 12 t N2O. Approximately one-third of the methane and carbon dioxide emissions originated in the pelagic zone and two-thirds in the reed belt (without plant emissions) whereas nitrous oxide emissions were similar in these two zones. An estimate of ebullitive emissions resulted in additional 1,765 t CH4 that predominantly originated in or near the reed belt from spring to autumn.

Keywords

Carbon dioxide Methane Nitrous oxide Ebullition Gas flux 

Notes

Acknowledgments

This study was performed as part of the project EULAKES that is financially supported by the Central Europe Programme and the ERDF funds of the European Union (Project Nr. 2CE243P3). The authors thank three anonymous reviewers who provided valuable suggestions to improve an earlier version of the manuscript considerably. We are also grateful to Gerhard Heiss for providing Fig. 1 of this paper.

References

  1. Barros, N., J. J. Cole, L. J. Tranvik, Y. T. Prairie, D. Bastviken, V. L. M. Huszar, P. del Giorgio & F. Roland, 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience 4: 593–596.CrossRefGoogle Scholar
  2. Bastviken, D., J. J. Cole, M. L. Pace & L. Tranvik, 2004. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles 18: GB4009.Google Scholar
  3. Bastviken, D., J. J. Cole, M. L. Pace & M. C. Van de Bogert, 2008. Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. Journal of Geophysical Research: Biogeosciences 113: 2024.CrossRefGoogle Scholar
  4. Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold & F. Sabater, 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience 1, 95–100, 2: 595.Google Scholar
  5. Bergstrom, I., S. Makela, P. Kankaala & P. Kortelainen, 2007. Methane efflux from littoral vegetation stands of southern boreal lakes: an upscaled regional estimate. Atmospheric Environment 41: 339–351.CrossRefGoogle Scholar
  6. Brix, H., B. K. Sorrell & H.-H. Schierup, 1996. Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquatic Botany 54: 151–163.CrossRefGoogle Scholar
  7. Brix, H., B. K. Sorrell & B. Lorenzen, 2001. Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany 69: 313–324.CrossRefGoogle Scholar
  8. Bussmann, I., S. Schlomer, M. Schluter & M. Wessels, 2011. Active pockmarks in a large lake (Lake Constance, Germany): effects on methane distribution and turnover in the sediment. Limnology and Oceanography 56: 379–393.CrossRefGoogle Scholar
  9. Butman, D. & P. A. Raymond, 2011. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience 4: 839–842.CrossRefGoogle Scholar
  10. Casper, P., S. C. Maberly, G. H. Hall & B. J. Finlay, 2000. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49: 1–19.CrossRefGoogle Scholar
  11. Chen, H., M. Wang, N. Wu, Y. F. Wang, D. Zhu, Y. H. Gao & C. H. Peng, 2011. Nitrous oxide fluxes from the littoral zone of a lake on the Qinghai-Tibetan Plateau. Environmental Monitoring and Assessment 182: 545–553.PubMedCrossRefGoogle Scholar
  12. Cole, J. J., D. L. Bade, D. Bastviken, M. L. Pace & M. Van de Bogert, 2010. Multiple approaches to estimating air–water gas exchange in small lakes. Limnology and Oceanography: Methods 8: 285–293.CrossRefGoogle Scholar
  13. Demarty, M., J. Bastien & A. Tremblay, 2011. Annual follow-up of gross diffusive carbon dioxide and methane emissions from a boreal reservoir and two nearby lakes in Québec, Canada. Biogeosciences 8: 41–53.CrossRefGoogle Scholar
  14. Deutzmann, J. S. & B. Schink, 2011. Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Applied and Environmental Microbiology 77: 4429–4436.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dzyuban, A. N., 2010. Dynamics of microbial oxidation of methane in the water of stratified lakes. Microbiology 79: 822–829.CrossRefGoogle Scholar
  16. Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz & R. Van Dorland, 2007. Changes in atmospheric constituents and in radiative forcing. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York.Google Scholar
  17. Hietz, P., 1992. Die Rolle des Detritus im Ökosystem des Schilfgürtels am Neusiedler See, Verhandlungen der Zoologisch-Botanischen Gesellschaft. Österreich 129: 35–66.Google Scholar
  18. Hofmann, H., L. Federwisch & F. Peeters, 2010. Wave-induced release of methane: littoral zones as a source of methane in lakes. Limnology and Oceanography 55: 1990–2000.CrossRefGoogle Scholar
  19. Huttunen, J. T., K. M. Lappalainen, E. Saarijarvi, T. Vaisanen & P. J. Martikainen, 2001. A novel sediment gas sampler and a subsurface gas collector used for measurement of the ebullition of methane and carbon dioxide from a eutrophied lake. Science of the Total Environment 266: 153–158.PubMedCrossRefGoogle Scholar
  20. Huttunen, J. T., J. Alm, A. Liikanen, S. Juutinen, T. Larmola, T. Hammar, J. Silvola & P. J. Martikainen, 2003. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52: 609–621.PubMedCrossRefGoogle Scholar
  21. Juutinen, S., J. Alm, T. Larmola, J. T. Huttunen, M. Morero, P. J. Martikainen & J. Silvola, 2003. Major implication of the littoral zone for methane release from boreal lakes. Global Biogeochemical Cycles 17: 1117.CrossRefGoogle Scholar
  22. Juutinen, S., J. Alm, T. Larmola, S. Saarnio, P. J. Martikainen & J. Silvola, 2004. Stand-specific diurnal dynamics of CH4 fluxes in boreal lakes: patterns and controls. Journal of Geophysical Research: Atmospheres 109: D19313.CrossRefGoogle Scholar
  23. Juutinen, S., M. Rantakari, P. Kortelainen, J. T. Huttunen, T. Larmola, J. Alm, J. Silvola & P. J. Martikainen, 2009. Methane dynamics in different boreal lake types. Biogeosciences 6: 209–223.CrossRefGoogle Scholar
  24. Kankaala, P., T. Kaki & A. Ojala, 2003a. Quality of detritus impacts on spatial variation of methane emissions from littoral sediment of a boreal lake. Archiv fur Hydrobiologie 157: 47–66.CrossRefGoogle Scholar
  25. Kankaala, P., S. Makela, I. Bergstrom, E. Huitu, T. Kaki, A. Ojala, M. Rantakari, P. Kortelainen & L. Arvola, 2003b. Midsummer spatial variation in methane efflux from stands of littoral vegetation in a boreal meso-eutrophic lake. Freshwater Biology 48: 1617–1629.CrossRefGoogle Scholar
  26. Kankaala, P., S. Taipale, H. Nykanen & R. I. Jones, 2007. Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. Journal of Geophysical Research: Biogeosciences 112: 2003.CrossRefGoogle Scholar
  27. Larmola, T., J. Alm, S. Juutinen, J. T. Huttunen, P. J. Martikainen & J. Silvola, 2004. Contribution of vegetated littoral zone to winter fluxes of carbon dioxide and methane from boreal lakes. Journal of Geophysical Research 109: 19102.CrossRefGoogle Scholar
  28. Liikanen, A. & P. J. Martikainen, 2003. Effect of ammonium and oxygen on methane and nitrous 560 oxide fluxes across sediment–water interface in a eutrophic lake. Chemosphere 52: 1287–1293.PubMedCrossRefGoogle Scholar
  29. Liu, Y. S., R. B. Zhu, D. W. Ma, H. Xu, Y. H. Luo, T. Huang & L. G. Sun, 2011. Temporal and spatial variations of nitrous oxide fluxes from the littoral zones of three alga-rich lakes in coastal Antarctica. Atmospheric Environment 45: 1464–1475.CrossRefGoogle Scholar
  30. Lopes, F., E. Viollier, A. Thiam, G. Michard, G. Abril, A. Groleau, F. Prevot, J. F. Carrias, P. Alberic & D. Jezequel, 2011. Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Applied Geochemistry 26: 1919–1932.CrossRefGoogle Scholar
  31. Maberly, S. C., P. A. Barker, A. W. Stott & M. M. De Ville, 2013. Catchment productivity controls CO2 emissions from lakes. Nature Climate Change 3: 391–394.CrossRefGoogle Scholar
  32. Marani, L. & P. C. Alvala, 2007. Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmospheric Environment 41: 1627–1633.CrossRefGoogle Scholar
  33. Matthews, C. J. D., V. L. St.Louis & R. H. Hesslein, 2003. Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. Environmental Science and Technology 37: 772–780.PubMedCrossRefGoogle Scholar
  34. McCrackin, M. L. & J. J. Elser, 2010. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes. Ecology 91: 528–539.PubMedCrossRefGoogle Scholar
  35. Nguyen, T. D., P. Crill & D. Bastviken, 2010. Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry 100: 185–196.CrossRefGoogle Scholar
  36. Ortiz-Llorente, M. J. & M. Alvarez-Cobelas, 2012. Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmospheric Environment 59: 328–337.CrossRefGoogle Scholar
  37. Phelps, A. R., K. M. Peterson & M. O. Jeffries, 1998. Methane efflux from high-latitude lakes during spring ice melt. Journal of Geophysical Research: Atmospheres 103: 29029–29036.CrossRefGoogle Scholar
  38. Sasaki, M., S. Imura, S. Kudoh, T. Yamanouchi, S. Morimoto & G. Hashida, 2009. Methane efflux from bubbles suspended in ice-covered lakes in Syowa Oasis, East Antarctica. Journal of Geophysical Research: Atmospheres 114: 18114.CrossRefGoogle Scholar
  39. Sasaki, Y., K. Koba, M. Yamamoto, A. Makabe, Y. Ueno, M. Nakagawa, S. Toyoda, N. Yoshida & M. Yoh, 2011. Biogeochemistry of nitrous oxide in Lake Kizaki, Japan, elucidated by nitrous oxide isotopomer analysis. Journal of Geophysical Research: Biogeosciences 116: 4030.CrossRefGoogle Scholar
  40. Scandella, B. P., C. Varadharajan, H. F. Hemond, C. Ruppel & R. Juanes, 2011. A conduit dilation model of methane venting from lake sediments. Geophysical Research Letters 38: 6408.CrossRefGoogle Scholar
  41. Schubert, C. J., F. S. Lucas, E. Durisch-Kaiser, R. Stierli, T. Diem, O. Scheidegger, F. Vazquez & B. Muller, 2010. Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquatic Sciences 72: 455–466.CrossRefGoogle Scholar
  42. Schubert, C. J., T. Diem & W. Eugster, 2012. Methane emissions from a small wind Shielded Lake determined by Eddy covariance flux chambers, anchored funnels, and boundary model calculations: a comparison. Environmental Science & Technology 46: 4515–4522.CrossRefGoogle Scholar
  43. Soetaert, K., M. Hoffmann, P. Meire, M. Starink, D. van Oevelen, S. Van Regenmortel & T. Cox, 2004. Modeling growth and carbon allocation in two reed beds (Phragmites australis) in the Scheldt estuary. Aquatic Botany 79: 211–234.CrossRefGoogle Scholar
  44. Soja, G., J. Züger, M. Knoflacher, P. Kinner & A.-M. Soja, 2013. Climate impacts on water balance of a shallow steppe lake in Eastern Austria (Lake Neusiedl). Journal of Hydrology 480: 115–124.CrossRefGoogle Scholar
  45. Spangl, W. & L. Moosmann, 2010. Luftgütemessungen und meteorologische Messungen. REP-0262. Umweltbundesamt Wien, 116 pp.Google Scholar
  46. Spangl, W. & C. Nagl, 2011. Jahresbericht der Luftgütemessungen in Österreich 2010. REP-0326. Umweltbundesamt Wien, 175 pp.Google Scholar
  47. Striegl, R. G. & C. M. Michmerhuizen, 1998. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnology and Oceanography 43: 1519–1529.CrossRefGoogle Scholar
  48. Twining, B. S., S. E. Mylon & G. Benoit, 2007. Potential role of copper availability in nitrous oxide accumulation in a temperate lake. Limnology and Oceanography 52: 1354–1366.CrossRefGoogle Scholar
  49. Vachon, D., Y. T. Prairie & J. J. Cole, 2010. The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnology and Oceanography 55: 1723–1732.CrossRefGoogle Scholar
  50. Walter, K. M., L. C. Smith & F. S. Chapin, 2007. Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 365: 1657–1676.CrossRefGoogle Scholar
  51. Wang, H. J., W. D. Wang, C. Q. Yin, Y. C. Wang & J. W. Lu, 2006. Littoral zones as the “hotspots” of nitrous oxide (N(2)O) emission in a hyper-eutrophic lake in China. Atmospheric Environment 40: 5522–5527.CrossRefGoogle Scholar
  52. Wang, H. J., L. Y. Yang, W. D. Wang, J. W. Lu & C. Q. Yin, 2007. Nitrous oxide (N(2)O) fluxes and their relationships with water-sediment characteristics in a hyper-eutrophic shallow lake, China. Journal of Geophysical Research: Biogeosciences 112: 1005.CrossRefGoogle Scholar
  53. Wang, S. L., C. Q. Liu, K. M. Yeager, G. J. Wan, J. Li, F. X. Tao, Y. C. Lue, F. Liu & C. X. Fan, 2009. The spatial distribution and emission of nitrous oxide (N(2)O) in a large eutrophic lake in eastern China: anthropogenic effects. Science of the Total Environment 407: 3330–3337.PubMedCrossRefGoogle Scholar
  54. Wang, S. L., K. M. Yeager, G. J. Wan, C. Q. Liu, F. X. Tao & C. X. Fan, 2010. Short-term field observations of nitrous oxide saturations in Lake Taihu, China: the need for high temporal resolution studies. Journal of Environmental Quality 39: 1858–1863.PubMedCrossRefGoogle Scholar
  55. Xing, Y. P., P. Xie, H. Yang, L. Y. Ni, Y. S. Wang & W. H. Tang, 2004. Diel variation of methane fluxes in summer in a eutrophic subtropical lake in China. Journal of Freshwater Ecology 19: 639–644.CrossRefGoogle Scholar
  56. Xing, Y. P., P. Xie, H. Yang, L. Y. Ni, Y. S. Wang & K. W. Rong, 2005. Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical lake in China. Atmospheric Environment 39: 5532–5540.CrossRefGoogle Scholar
  57. Yang, Z. F., Y. Zhao & X. H. Xia, 2012. Nitrous oxide emissions from Phragmites australis-dominated zones in a shallow lake. Environmental Pollution 166: 116–124.PubMedCrossRefGoogle Scholar
  58. Zhu, R. B., Y. S. Liu, H. Xu, T. Huang, J. J. Sun, E. D. Ma & L. G. Sun, 2010. Carbon dioxide and methane fluxes in the littoral zones of two lakes, east Antarctica. Atmospheric Environment 44: 304–311.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Gerhard Soja
    • 1
    Email author
  • Barbara Kitzler
    • 2
  • Anna-Maria Soja
    • 1
  1. 1.Health & Environment Department, Environmental Resources & TechnologiesAIT Austrian Institute of Technology GmbHTullnAustria
  2. 2.Department of Soil EcologyFederal Forest OfficeViennaAustria

Personalised recommendations