Hydrobiologia

, Volume 722, Issue 1, pp 19–30 | Cite as

Radioactive contamination of aquatic insects in a stream impacted by the Fukushima nuclear power plant accident

Primary Research Paper

Abstract

The Fukushima Daiichi Nuclear Power Plant accident emitted radioactive substances into the environment, contaminating a diverse range of organisms. Stream algae, litter, sand substrate, aquatic insects and fishes are among the organisms that have been impacted. Radioactive Cs contaminations in the litter and sand substrate were elevated where the atmospheric dose rate in the air was high. Radioactive Cs contaminations in algae and aquatic insects varied irregularly; nevertheless, radioactive Cs contaminations in aquatic insects in pools were consistently higher than those in stream riffles. Contamination by the radioactive Cs differed by species, location and stream velocity. This study was undertaken in a limited number of samples and sites, with more extensive studies planned to fully determine the impact of radionuclides on aquatic ecosystems.

Keywords

Algae Aquatic insects Litter Radioactive cesium Stream 

References

  1. Brittain, J. E. & L. Håkanson, 2002. The freshwater environment and application of countermeasures. Madrid, Spain: EC-sponsored training course on Radoecological assessment and decision-making techniques for the management of contaminated freshwater ecosystems (TRA-RAD-FW).Google Scholar
  2. Brittain, J. E. & J. E. Gjerseth, 2010. Long-term trends and variation in 137Cs activity concentrations in brown trout (Salmo trutta) from Øvre Heimdalsvatn, a Norwegian subalpine lake. Hydrobiologia 642: 107–113.CrossRefGoogle Scholar
  3. Brittain, J. E., A. Storruste & E. Larsen, 1991. Radiocesium in brown trout (Salmo-trutta) from a sub-alpine lake ecosystem after the Chernobyl reactor accident. Journal of Environmental Radioactivity 14: 181–191.CrossRefGoogle Scholar
  4. Brittain, J. E., H. E. Bjørnstad, B. Salbu & D. H. Oughton, 1992. Winter transport of Chernobyl radionuclides from a montane catchment to an ice-covered lake. Analyst 117: 515–519.PubMedCrossRefGoogle Scholar
  5. Corbet, P. S., 1998. Dragonflies Behavior and Ecology of Odonata. Cornell University Press, New York, USA.Google Scholar
  6. Fritsch, C., R. Scheifler, K. Beaugelin-Seiller, P. Hubert, M. Coeurdassier, A. D. Vaufleury & P. M. Badot, 2008. Biotic interactions modify the transfer of Cesium-137 in a soil-earthworm-plant-snail food web. Environmental Toxicology and Chemistry 27: 1698–1707.PubMedCrossRefGoogle Scholar
  7. Fukuyama, T., C. Takenaka & Y. Onda, 2005. 137Cs loss via soil erosion from a mountainous headwater catchment in central Japan. Science of the Total Environment 350: 238–247.PubMedCrossRefGoogle Scholar
  8. Furukawa, F., S. Watanabe & T. Kaneko, 2012a. Excretion of cesium and rubidium via the branchial potassium-transporting pathway in Mozambique tilapia. Fisheries Science 78: 597–602.CrossRefGoogle Scholar
  9. Furukawa, F., S. Watanabe, S. Kimura & T. Kaneko, 2012b. Potassium excretion through ROMK potassium channel expressed in gill mitochondrion-rich cells of Mozambique tilapia. American Journal of Physiology -Regulatory, Integrative and Comparative Physiology 302: R568–R576.PubMedCrossRefGoogle Scholar
  10. Galkovskaya, G. A. & D. V. Molotkov, 2001. Species diversity and dominance in the planktonic rotifer community of the Pripyat River in the Chernobyl region (1988–1996). Hydrobiologia 446: 179–185.CrossRefGoogle Scholar
  11. Hashimoto, S., S. Ugawa, K. Nanko, & K. Shichi, 2012. The total amounts of radioactively contaminated materials in forests in Fukushima, Japan. Scientific Reports 2: article number 416.Google Scholar
  12. Hofman, D., L. Monte, P. Boyer, J. Brittain, G. Donchyts, E. Gallego, D. Gheorghiu, L. Håkanson, R. Heling, A. Kerekes, G. Kocsy, S. Lepicard, O. Slavik, D. Slavnicu, J. Smith & M. Zheleznyak, 2011. Computerised decision support systems for the management of freshwater radioecological emergencies: assessment of the state-of-the-art with respect to the experiences and needs of end-users. Journal of Environmental Radioactivity 102: 119–127.PubMedCrossRefGoogle Scholar
  13. Hongve, D., J. E. Brittain & H. E. Bjornstad, 2002. Aquatic mosses as a monitoring tool for 137Cs contamination in streams and rivers-afield study from central southern Norway. Journal of Environmental Radioactivity 60: 139–147.PubMedCrossRefGoogle Scholar
  14. Itazawa, Y. & I. Hanyu, 1991. Fish Physiology. Kouseisha Kouseikaku, Tokyo, Japan.Google Scholar
  15. Jackson, D., D. Copplestone, D. M. Stone & G. M. Smith, 2005. Terrestrial invertebrate population studies in the Chernobyl exclusion zone, Ukraine. Radioprotection 40(Suppl.1): S857–S863.CrossRefGoogle Scholar
  16. Kapoor, N. N., 1978. Effect of salinity on the osmoregulatory cells in the tracheal gills of the stonefly nymph, Paragnetina-media (Plecoptera Perlidae). Canadian Journal of Zoology 56: 2608–2613.CrossRefGoogle Scholar
  17. Kato, H., Y. Onda & Y. Tanaka, 2010. Using 137Cs and 210Pbex measurements to estimate soil redistribution rates on semi-arid grassland in Mongolia. Geomorphology 114: 508–519.CrossRefGoogle Scholar
  18. Kinoshita, N., K. Sueki, K. Sasa, J. Kitagawa, S. Ikarashi, T. Nishimura, Y. S. Wong, Y. Satou, K. Handa, T. Takahashi, M. Sato & T. Yamagata, 2011. Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proceedings of the National Academy of Sciences of the United States of America 108: 19526–19529.PubMedCrossRefGoogle Scholar
  19. Komnick, H., 1977. Chloride cells and chloride epithelia of aquatic insect. International Review of Cytology 9: 285–329.CrossRefGoogle Scholar
  20. Komnick, H. & W. Wichard, 1975. Chloride cells of larval notonecta-glauca and Naucoris-cimicoides (Hemiptera, Hydrocorisae) fine-structure and cell counts at different salinities. Cell and Tissue Research 56: 539–549.Google Scholar
  21. Krivolutzkii, D. A. & A. D. Pokarzhevskii, 1992. Effect of radioactive fallout on soil animal populations in the 30 km zone of the Chernobyl atomic power station. Science of the Total Environment 112: 69–77.PubMedCrossRefGoogle Scholar
  22. Kruyts, N. & B. Delvaux, 2002. Soil organic horizons as a major source for radiocesium biorecycling in forest ecosystems. Journal of Environmental Radioactivity 58: 175–190.PubMedCrossRefGoogle Scholar
  23. Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America, 3rd ed. Kendall/Hunt, Dubuque, IA, USA.Google Scholar
  24. Mietelskia, J. W., S. Maksimovab, P. Szwałkoc, K. Wnukd, P. Zagrodzkia, S. Błażeja, P. Gacaa, E. Tomankiewicza & O. Orlovf, 2010. Plutonium, 137Cs and 90Sr in selected invertebrates from some areas around Chernobyl nuclear power plant. Journal of Environmental Radioactivity 101: 488–493.CrossRefGoogle Scholar
  25. Ministry of Education, Culture, Sports, Science and Technology (MEXT), 2013. Database on the Research of Radioactive Substances Distribution. http://radb.jaea.go.jp/mapdb/en/.
  26. Møller, A. P. & T. A. Mousseau, 2009. Reduced abundance of insects and spiders linked to radiation at Chernobyl 20 years after the accident. Biology Letters 5: 356–359.PubMedCrossRefGoogle Scholar
  27. Møller, A. P. & T. A. Mousseau, 2011. Conservation consequences of Chernobyl and other nuclear accidents. Biological Conservation 144: 2787–2798.CrossRefGoogle Scholar
  28. Ohara, T., Y. Morino & A. Tanaka, 2011. Atmospheric behavior of radioactive materials from Fukushima Daiichi Nuclear Power Plant. Journal of the National Institute of Public Health 60: 292–299.Google Scholar
  29. Patrick, R., J. Palms, D. Kreeger & C. Harris, 2007. Twenty-five year study of radionuclides in the Susquehanna river via periphyton biomonitors. Health Physics 92: 1–9.PubMedCrossRefGoogle Scholar
  30. Report of the Chernobyl Forum Expert Group ‘Environment’, 2006. Environmental Consequences of the Chernobyl Accident and their Remediation: Twenty Years of Experience. Radiological Assessment Reports Series, IAEA, Vienna, Austria.Google Scholar
  31. Salbu, B., H. E. Bjørnstad & J. E. Brittain, 1992. Fractionation of cesium isotopes and 90Sr in snowmelt run-off and lake waters from a contaminated Norwegian mountain catchment. Journal of Radioanalytical and Nuclear Chemistry 156: 7–20.CrossRefGoogle Scholar
  32. Smith, J. T., R. N. J. Comans, N. A. Beresford, S. M. Wright, B. J. Howard & W. C. Camplin, 2000. Chernobyl’s legacy in food and water. Nature 405: 141.PubMedCrossRefGoogle Scholar
  33. Solem, J. O. & E. Gaare, 1992. Radiocesium in aquatic invertebrates from Dovrefjell, Norway, 1986 to 1989, after the Chernobyl fall-out. Journal of Environmental Radioactivity 17: 1–11.CrossRefGoogle Scholar
  34. Ueda, S., H. Hasegawa, H. Kakiuchi, N. Akata, Y. Ohtsuka & S. Hisamatsu, 2013. Fluvial discharges of radiocesium from watersheds contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident, Japan. Journal of Environmental Radioactivity 118: 96–104.PubMedCrossRefGoogle Scholar
  35. Voshell, J. R., J. S. Eldridge & T. W. Oakes, 1985. Transfer of Cs-137 and Co-60 in a waste retention pond with emphasis on aquatic insects. Health Physics 49: 777–789.PubMedCrossRefGoogle Scholar
  36. Wakiyama, Y., Y. Onda, S. Mizugaki, H. Asai & S. Hiramatsu, 2010. Soil erosion rates on forested mountain hillslopes estimated using 137Cs and 210Pbex. Geoderma 159: 39–52.CrossRefGoogle Scholar
  37. Ward, J. V., 1992. Aquatic Insect Ecology: I. Biology and Habitat. Wiley and Sons, New York, USA.Google Scholar
  38. Wichard, W., P. T. P. Tsui & H. Komnick, 1973. Effect of different salinities on coniform chloride cells of mayfly larvae. Journal of Insect Physiology 19: 1825–1835.CrossRefGoogle Scholar
  39. Wichard, W., W. Arens & G. Eisenbeis, 2002. Biological Atlas of Aquatic Insects. Apollo Books, Stenstrup, Denmark.Google Scholar
  40. Yablokov, A. V., V. B. Nesterenko & A. V. Nesterenko, 2009. Chernobyl, Consequences of the Catastrophe for People and the Environment. Annals of the New York Academy of Sciences Volume 1181, USA.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Kansai Research CenterForestry and Forest Products Research InstituteFushimiJapan
  2. 2.Forestry and Forest Products Research InstituteTsukubaJapan

Personalised recommendations