, Volume 721, Issue 1, pp 165–184 | Cite as

Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda)

  • Martina Weiss
  • Jan Niklas Macher
  • Meike Anna Seefeldt
  • Florian Leese
Primary Research Paper


The freshwater amphipod Gammarus fossarum Koch, in Panzer, 1836 is a locally abundant keystone species mainly occuring in European headwaters but also in larger rivers. Genetic studies in the past 25 years have revealed three cryptic species within nominal G. fossarum (types A, B and C). Assignments of specimens to these types were based on allozyme and 16S markers. Today, a fragment of the cytochrome c oxidase subunit 1 (CO1) is primarily used as a genetic marker for species assignments (‘DNA Barcoding’), yet not a single CO1 sequence of G. fossarum is available in the Barcode of Life Database. We analysed new CO1 and 16S data for German, Hungarian and Croatian G. fossarum specimens and compared them with 16S and CO1 sequences of G. fossarum from GenBank. Thereby, we close the gap between traditional allozyme- and 16S-based species assignments and modern CO1 barcoding. Studying genetic variation in 55 specimens from 29 populations, we identified between 11 and 23 novel and genetically distinct clades using distance- and tree-based methods. Our results suggest that G. fossarum comprises several additional, yet unrecognised, species in particular from the Balkan region. Therefore, a taxonomic revision and biogeographic reconsideration of the G. fossarum complex is urgently needed.


Cryptic species DNA taxonomy DNA barcoding Phylogeography Species assignment Amphipoda 



We thank Ralph Tollrian (Ruhr University Bochum, Germany) for helpful discussions and support. Furthermore, we thank Julia Maria Vollmer (Ruhr University Bochum, Germany) for laboratory support. Florian Altermatt (Swiss Federal Institute of Aquatic Science and Technology, EAWAG), Mark Harrison (University of Leicester, United Kingdom) and two anonymous reviewers contributed helpful comments and suggestions that substantially improved this manuscript. Special thanks to Gerd Mayer (University of Ulm, Germany) for his efforts in collecting and providing us with the southern German samples. We are indebted to Géza Selmeczy (University of Pannonia, Hungary), Maria Špoljar & Krešimir Žganec (University of Zagreb, Croatia) and Anne-Marie Westram and Florian Altermatt (Swiss Federal Institute of Aquatic Science and Technology, EAWAG) for kindly providing us additional specimens for analysis. This project was funded by a fund grant of the Ruhr University’s rectorate to FL. FL and MW are supported by a grant of the Kurt Eberhard Bode foundation within the Deutsches Stiftungszentrum (DSZ).

Supplementary material

10750_2013_1658_MOESM1_ESM.tif (28.5 mb)
Supplementary material 1 (TIFF 29228 kb)
10750_2013_1658_MOESM2_ESM.xlsx (108 kb)
Supplementary material 2 (XLSX 108 kb)
10750_2013_1658_MOESM3_ESM.docx (117 kb)
Supplementary material 3 (DOCX 117 kb)


  1. Baird, H., K. Miller & J. Stark, 2011. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods. Molecular Ecology 20: 3439–3454.PubMedCrossRefGoogle Scholar
  2. Benson, D., M. Boguski, D. Lipman, J. Ostell, B. Ouellette, B. Rapp & D. Wheeler, 1999. GenBank. Nucleic Acids Research 27: 12.Google Scholar
  3. Bergsten, J., D. Bilton, T. Fujisawa, M. Elliott, M. Monaghan, M. Balke, L. Hendrich, J. Geijer, J. Herrmann & G. Foster, 2012. The effect of geographical scale of sampling on DNA barcoding. Systematic Biology 61: 851–869.PubMedCrossRefGoogle Scholar
  4. Costa, F., J. deWaard, J. Boutillier, S. Ratnasingham, R. Dooh, M. Hajibabaei & P. Hebert, 2007. Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64: 272–295.CrossRefGoogle Scholar
  5. Costa, F., C. Henzler, D. Lunt, N. Whiteley & J. Rock, 2009. Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes. Systematics and Biodiversity 7: 365–379.CrossRefGoogle Scholar
  6. Cummins, K., 1975. The Ecology of Running Waters: Theory and Practice. Proceedings of the Sandusky River Basin Symposium International Joint Committee on the Great Lakes, Tiffin, OH: 277–293.Google Scholar
  7. Cummins, K. & M. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.CrossRefGoogle Scholar
  8. Drummond, A., B. Ashton, S. Buxton, M. Cheung, A. Cooper, C. Duran, M. Field, J. Heled, M. Kearse, S. Markowitz, R. Moir, S. Stones-Havas, S. Sturrock, T. Thierer & A. Wilson, 2011. Geneious v5.4.6. Available from http://www.geneious.com.
  9. Drummond, A., M. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973.PubMedCrossRefGoogle Scholar
  10. Ethridge, J., J. Gibson & C. Nice, 2013. Cryptic diversity within and amongst spring-associated Stygobromus amphipods (Amphipoda: Crangonyctidae). Zoological Journal of the Linnean Society 167: 227–242.CrossRefGoogle Scholar
  11. Excoffier, L. & H. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.PubMedCrossRefGoogle Scholar
  12. Ezard, T., T. Fujisawa & T. Barraclough, 2009. Splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-14/r31. http://R-Forge.R-project.org/projects/splits/.
  13. Feckler, A., A. Thielsch, K. Schwenk, R. Schulz & M. Bundschuh, 2012. Differences in the sensitivity among cryptic lineages of the Gammarus fossarum complex. Science of the Total Environment 439: 158–164.Google Scholar
  14. Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.PubMedGoogle Scholar
  15. Fujisawa, T. & T. Barraclough, 2013. Delimiting species using single-locus data and the generalized mixed Yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology 0: 1–18.Google Scholar
  16. Goedmakers, A., 1972. Gammarus fossarum Koch, 1835: redescription based on neotype material and notes on its local variation (Crustacea, Amphipoda). Bijdragen Tot De Dierkunde 42: 124–138.Google Scholar
  17. Goedmakers, A., 1980. Microgeographic races of Gammarus fossarum Koch, 1836. Crustaceana Supplement 6: 216–224.Google Scholar
  18. Goldstein, P. & R. DeSalle, 2011. Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. Bioessays 33: 135–147.PubMedCrossRefGoogle Scholar
  19. Havermans, C., Z. Nagy, G. Sonet, C. De Broyer & P. Martin, 2010. Incongruence between molecular phylogeny and morphological classification in amphipod crustaceans: a case study of Antarctic lysianassoids. Molecular Phylogenetics and Evolution 55: 202–209.PubMedCrossRefGoogle Scholar
  20. Hebert, P., A. Cywinska, S. Ball & J. deWaard, 2003a. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270: 313–321.PubMedCrossRefGoogle Scholar
  21. Hebert, P., S. Ratnasingham & J. deWaard, 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences 270(Suppl 1): S96–S99.PubMedCrossRefGoogle Scholar
  22. Hebert, P. & J. Landry, 2010. DNA barcodes for 1/1000 of the animal kingdom. Biology Letters 6: 359–362.PubMedCrossRefGoogle Scholar
  23. Hebert, P., M. Stoeckle, T. Zemlak & C. Francis, 2004. Identification of birds through DNA barcodes. PLoS Biology 2: 312.Google Scholar
  24. Hou, Z., J. Fu & S. Li, 2007. A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 45: 596–611.Google Scholar
  25. Hou, Z. & S. Li, 2010. Intraspecific or interspecific variation: delimitation of species boundaries within the genus Gammarus (Crustacea, Amphipoda, Gammaridae), with description of four new species. Zoological Journal of the Linnean Society 160: 215–253.Google Scholar
  26. Hou, Z., Z. Li & S. Li, 2009. Identifying Chinese species of Gammarus (Crustacea: Amphipoda) using DNA barcoding. Current Zoology 52: 158–164.Google Scholar
  27. Hou, Z., B. Sket, C. Fišer & S. Li, 2011. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences of the USA 108: 14533–14538.PubMedCrossRefGoogle Scholar
  28. Jażdżewski, K., 1977. Remarks on the morphology of Gammarus fossarum Koch, 1835, and Gammarus kischineffensis Schellenberg, 1937. Crustaceana Supplement 4: 201–211.Google Scholar
  29. Katoh, K., K. Misawa, K. Kuma & T. Miyata, 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.PubMedCrossRefGoogle Scholar
  30. Lohse, K., 2009. Can mtDNA barcodes be used to delimit species? A response to Pons et al., (2006). Systematic Biology 58(4): 439–442.PubMedCrossRefGoogle Scholar
  31. Lörz, A. & C. Held, 2004. A preliminary molecular and morphological phylogeny of the Antarctic Epimeriidae and Iphimediidae (Crustacea, Amphipoda). Molecular Phylogenetics and Evolution 31: 4–15.PubMedCrossRefGoogle Scholar
  32. Macdonald III, K. S., L. Yampolsky & J. Duffy, 2005. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Molecular Phylogenetics and Evolution 35: 323–343.PubMedCrossRefGoogle Scholar
  33. MacNeil, C., J. Dick & R. Elwood, 1997. The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the functional feeding group concept. Biological Reviews 72: 349–364.CrossRefGoogle Scholar
  34. Meyer, C. P. & G. Paulay, 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3: e422.PubMedCrossRefGoogle Scholar
  35. Meyran, J., M. Monnerot & P. Taberlet, 1997. Taxonomic status and phylogenetic relationships of some species of the genus Gammarus (Crustacea, Amphipoda) deduced from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 8: 1–10.PubMedCrossRefGoogle Scholar
  36. Monaghan, M., R. Wild, M. Elliot, T. Fujisawa, M. Balke, D. Inward, D. Lees, R. Ranaivosolo, P. Eggleton, T. Barraclough & A. Vogler, 2009. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58: 298–311.PubMedCrossRefGoogle Scholar
  37. Moret, Y., L. Bollache, R. Wattier & T. Rigaud, 2007. Is the host or the parasite the most locally adapted in an amphipod–acanthocephalan relationship? A case study in a biological invasion context. International Journal for Parasitology 37: 637–644.Google Scholar
  38. Müller, J., 1998. Genetic population structure of two cryptic Gammarus fossarum types across a contact zone. Journal of Evolutionary Biology 11: 79–101.CrossRefGoogle Scholar
  39. Müller, J., 2000. Mitochondrial DNA variation and the evolutionary history of cryptic Gammarus fossarum types. Molecular Phylogenetics and Evolution 15: 260–268.PubMedCrossRefGoogle Scholar
  40. Müller, J., E. Partsch & A. Link, 2000. Differentiation in morphology and habitat partitioning of genetically characterized Gammarus fossarum forms (Amphipoda) across a contact zone. Biological Journal of Linnean Society 69: 41–53.CrossRefGoogle Scholar
  41. Palumbi, S., A. Martin, S. Romano, W. Mcmillan, L. Stice & G. Grabowski, 1991. The Simple Fool’s Guide to PCR. A Collection of PCR Protocols, Version 2. University of Hawaii, Honolulu.Google Scholar
  42. Pauls, S., H. Lumbsch & P. Haase, 2006. Phylogeography of the montane caddisfly Drusus discolor: evidence for multiple refugia and periglacial survival. Molecular Ecology 15: 2153–2169.PubMedCrossRefGoogle Scholar
  43. Pinkster, S., 1983. The value of morphological characters in taxonomy of Gammarus. Beaufortia 33: 15–28.Google Scholar
  44. Pinkster, S. & M. Scheepmaker, 1994. Hybridization experiments and the taxonomy of Gammarus (Amphipoda): a contribution to the understanding of controversial results. Crustaceana 66(2): 129–143.CrossRefGoogle Scholar
  45. Pons, J., T. G. Barraclough, J. Gomez-Zurita, A. Cardoso, D. P. Duran, S. Hazell, S. Kamoun, W. D. Sumlin & A. P. Vogler, 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595–609.PubMedCrossRefGoogle Scholar
  46. Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.PubMedCrossRefGoogle Scholar
  47. Puillandre, N., A. Lambert, S. Brouillet & G. Achaz, 2012. ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.PubMedCrossRefGoogle Scholar
  48. R Core Team, 2012. R: A Language and Environmental for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
  49. Radulovici, A., P. Archambault & F. Dufresne, 2010. DNA barcodes for marine biodiversity: moving fast forward? Diversity 2: 450–472.CrossRefGoogle Scholar
  50. Radulovici, A., B. Sainte-Marie & F. Dufresne, 2009. DNA barcoding of marine crustaceans from the Estuary and Gulf of St Lawrence: a regional-scale approach. Molecular Ecology Resources 9 (Suppl 1): 181–187.Google Scholar
  51. Rambaut, A. & A. Drummond, 2007. http://beast.bio.ed.ac.uk/Tracer.
  52. Ratnasingham, S. & P. Hebert, 2007. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7: 355–364.
  53. Rock, J., J. Ironside, T. Potter, N. Whiteley & D. Lunt, 2007. Phylogeography and environmental diversification of a highly adaptable marine amphipod, Gammarus duebeni. Heredity 99: 102–111.PubMedCrossRefGoogle Scholar
  54. Rögl, F., 1999. Mediterranean and Paratethys. Facts and hypotheses of an oligocene to miocene paleogeography (short overview). Geologica Carpathica 50(4): 339–349.Google Scholar
  55. Ronquist, F., M. Teslenko, P. van der Mark, D. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. Suchard & J. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.PubMedCrossRefGoogle Scholar
  56. Roux, A., 1970. Les Gammares du groupe pulex. Essai de systématique biologique. Archives de Zoologie Expérimentale et Générale 111: 313–356.Google Scholar
  57. Scheepmaker, M. & J. van Dalfsen, 1989. Genetic differentiation in Gammarus fossarum and G. caparti (Crustacea, Amphipoda) with reference to G. pulex pulex in north-western Europe. Bijdragen Tot De Dierkunde 59: 127–139.Google Scholar
  58. Siegismund, H., 1988. Genetic differentiation in populations of freshwater amphipods Gammarus roeseli and Gammarus fossarum. Hereditas 109: 269–276.CrossRefGoogle Scholar
  59. Siegismund, H. & J. Müller, 1991. Genetic structure of Gammarus fossarum populations. Heredity 66: 419–436.CrossRefGoogle Scholar
  60. Stamatakis, A., 2008. The RAxML 7.0.4. Department of Computer Science Ludwig-Maximilians-Universität München.Google Scholar
  61. Stürzbecher, C., J. Müller & A. Seitz, 1998. Coexisting Gammarus fossarum Types (Amphipoda) in Central Europe: Regular Patterns of Population Dynamics and Microdistribution. Proceedings of the Fourth International Crustacean Congress, Amsterdam: 287–293.Google Scholar
  62. Sunnucks, P. & D. Hales, 1996. Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13: 510–524.PubMedCrossRefGoogle Scholar
  63. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.PubMedCrossRefGoogle Scholar
  64. Tang, C., F. Leasi, U. Obertegger, A. Kieneke, T. Barraclough & D. Fontaneto, 2012. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences of the USA 109: 16208–16212.PubMedCrossRefGoogle Scholar
  65. Tautz, D., P. Arctander, A. Minelli, R. H. Thomas & A. P. Vogler, 2003. A plea for DNA taxonomy. Trends in Ecology and Evolution 18: 70–74.CrossRefGoogle Scholar
  66. Westram, A., J. Jokela, C. Baumgartner & I. Keller, 2011. Spatial distribution of cryptic species diversity in European freshwater amphipods (Gammarus fossarum) as revealed by pyrosequencing. PLoS One 6: e23879.PubMedCrossRefGoogle Scholar
  67. Williams, P., M. Brown, J. Carolan, J. An, D. Goulson, A. Aytekin, L. Best, A. Byvaltsev, B. Cederberg & R. Dawson, 2012. Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with CO1 barcodes (Hymenoptera: Apidae). Systematics and Biodiversity 10: 1, 21–56.Google Scholar
  68. Witt, J., D. Threloff & P. Hebert, 2006. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology 15: 3073–3082.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Martina Weiss
    • 1
  • Jan Niklas Macher
    • 1
  • Meike Anna Seefeldt
    • 1
  • Florian Leese
    • 1
  1. 1.Department of Animal Ecology, Evolution and BiodiversityRuhr University BochumBochumGermany

Personalised recommendations