, Volume 731, Issue 1, pp 151–172 | Cite as

The nearshore shunt and the decline of the phytoplankton spring bloom in the Laurentian Great Lakes: insights from a three-dimensional lake model

  • Serghei A. Bocaniov
  • Ralph E. H. Smith
  • Claire M. Spillman
  • Matthew R. Hipsey
  • Luis F. Leon


Dreissenid mussels have been hypothesized to cause selective decreases of phytoplankton in nearshore areas (nearshore shunt hypothesis) as well as the near-complete loss of the offshore phytoplankton spring bloom in some Laurentian Great Lakes. To evaluate whether mussels can reasonably be expected to mediate such changes, we extended the three-dimensional hydrodynamic-ecological model (ELCOM-CAEDYM) to include mussels as a state variable and applied it to Lake Erie (USA-Canada). Mussel-mediated decreases in mean phytoplankton biomass were highly sensitive to the assigned mussel population size in each basin. In the relatively deep east basin, mussels were predicted to decrease phytoplankton in both nearshore and offshore zones, even during periods of thermal stratification but especially during the spring phytoplankton maximum. Spatially, impacts were associated with mussel distributions but could be strong even in areas without high mussel biomass, consistent with advection from areas of higher mussel biomass. The results supported the nearshore shunt hypothesis that mussel impacts on phytoplankton should be greater in nearshore than offshore waters and also supported suggestions about the emerging importance of deep water offshore mussels. The results of this study provide an important insight into ecological role of mussels in lowering plankton productivity in some world’s largest lakes.


Mussels Phytoplankton Large lake Lake Erie Three-dimensional modelling 

Supplementary material

10750_2013_1642_MOESM1_ESM.pdf (166 kb)
Supplementary material (PDF 166 kb)


  1. Ackerman, J. D., M. R. Loewen & P. F. Hamblin, 2001. Benthic pelagic coupling over a zebra mussel reef in western Lake Erie. Limnology and Oceanography 46: 892–904.CrossRefGoogle Scholar
  2. Arhonditsis, G. B. & M. T. Brett, 2004. Evaluation of the current state of mechanistic aquatic biogeochemical modeling. Marine Ecology Progress Series 271: 13–26.CrossRefGoogle Scholar
  3. Arnott, D. L. & M. J. Vanni, 1996. Nitrogen and phosphorus recycling by the zebra mussel (Dreissena polymorpha) in the western basin of Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 53: 646–659.CrossRefGoogle Scholar
  4. Barbiero, R. P. & M. L. Tuchman, 2004. Long-term dreissenid impacts in water clarity in Lake Erie. Journal of Great Lakes Research 30: 557–565.CrossRefGoogle Scholar
  5. Barbiero, R. P., D. C. Rockwell, G. J. Warren & M. L. Tuchman, 2006. Changes in spring phytoplankton communities and nutrient dynamics in the eastern basin of Lake Erie since the invasion of Dreissena spp. Canadian Journal of Fisheries and Aquatic Sciences 63: 1549–1563.CrossRefGoogle Scholar
  6. Barbiero, R. P., B. M. Lesht & G. J. Warren, 2012. Convergence of trophic state and the lower food web in Lakes Huron, Michigan and Superior. Journal of Great Lakes Research 38: 368–380.CrossRefGoogle Scholar
  7. Bierman, V. J. Jr., J. Kaur, J. V. DePinto, T. J. Feist & D. W. Dilks, 2005. Modeling the role of zebra mussels in the proliferation of blue-green algae in Saginaw Bay, Lake Huron. Journal of Great Lakes Research 31: 32–55.CrossRefGoogle Scholar
  8. Bocaniov, S. A. & R. E. H. Smith, 2009. Plankton metabolic balance at the margins of very large lakes: temporal variability and evidence for dominance of autochthonous processes. Freshwater Biology 54: 345–362.CrossRefGoogle Scholar
  9. Boegman, L., M. R. Loewen, P. F. Hamblin & D. A. Culver, 2008a. Vertical mixing and weak stratification over zebra mussel colonies in western Lake Erie. Limnology and Oceanography 53: 1093–1110.CrossRefGoogle Scholar
  10. Boegman, L., M. R. Loewen, D. A. Culver, P. F. Hamblin & M. M. Charlton, 2008b. Spatial–dynamic modeling of algal biomass in Lake Erie: relative impacts of dreissenid mussels and nutrient loads. Journal of Environmental Engineering 134: 456–468.CrossRefGoogle Scholar
  11. Charlton, M. N., M. N. LeSage & J. E. Milne, 1999. Lake Erie in transition: the 1990’s. In Munawar, M., T. Edsall & I. F. Munawar (eds), State of Lake Erie: Past. Present and Future. Ecovision World Monograph series. Backhuys Publishers, Leiden: 97–123.Google Scholar
  12. Conroy, J. D., D. D. Kane, D. M. Dolan, W. J. Edward, M. N. Charlton & D. A. Culver, 2005a. Temporal trends in Lake Erie plankton biomass: roles of external phosphorus loading and dreissenid mussels. Journal of Great Lakes Research 31(Suppl. 2): 89–110.CrossRefGoogle Scholar
  13. Conroy, J. D., W. J. Edwards, R. A. Pontius, D. D. Kane, H. Y. Zhang, J. F. Shea, J. N. Richey & D. A. Culver, 2005b. Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena sp.): potential impacts for nutrient remineralisation in western Lake Erie. Freshwater Biology 50: 1146–1162.CrossRefGoogle Scholar
  14. Depew, D. C., S. J. Guildford & R. E. H. Smith, 2006. Nearshore-offshore comparison of chlorophyll-a and phytoplankton production in the dreissenid-colonized eastern basin of Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 63: 1115–1129.CrossRefGoogle Scholar
  15. Evans, M. A., G. A. Fahnenstiel & D. Scavia, 2011. Incidental oligotrophication of North American Great Lakes. Environmental Science and Technology 45: 3297–3303.PubMedCrossRefGoogle Scholar
  16. Fahnenstiel, G. L., T. B. Bridgeman, G. A. Lang, M. J. McCormick & T. F. Nalepa, 1995. Phytoplankton productivity in Saginaw Bay, Lake Huron: effects of zebra mussel (Dreissena polymorpha) colonization. Journal of Great Lakes Research 21: 465–475.Google Scholar
  17. Fahnenstiel, G. L., S. Pothoven, H. Vanderploeg, D. Klarer, T. Nalepa & D. Scavia, 2010. Recent changes in primary production and phytoplankton in the offshore region of southeastern Lake Michigan. Journal of Great Lakes Research 36(Suppl. 3): 20–29.CrossRefGoogle Scholar
  18. Fishman, D. B., S. A. Adlerstein, H. A. Vanderploeg, G. L. Fahnenstiel & D. Scavia, 2009. Causes of phytoplankton changes in Saginaw Bay, Lake Huron, during the zebra mussel invasion. Journal of Great Lakes Research 35: 482–495.CrossRefGoogle Scholar
  19. Gergs, R., K. Rinke & K.-O. Rothhaupt, 2009. Zebra mussels mediate benthic–pelagic coupling by biodeposition and changing detrital stoichiometry. Freshwater Biology 54: 1379–1391.CrossRefGoogle Scholar
  20. Gergs, R., J. Grey & K.-O. Rothhaupt, 2011. Temporal variations in zebra mussel (Dreissena polymorpha) density structure the benthic food web and community composition. Biological Invasions 13: 2727–2738.CrossRefGoogle Scholar
  21. Ghadouani, A. & R. E. H. Smith, 2005. Phytoplankton distribution in Lake Erie as assessed by a new in situ spectrofluorometric technique. Journal of Great Lakes Research 31(Suppl. 2): 154–167.CrossRefGoogle Scholar
  22. Goedkoop, W., R. Naddafi & U. Grandin, 2011. Retention of N and P by zebra mussels (Dreissena polymorpha) and its quantitative role in the nutrient budget of eutrophic Lake Ekoln, Sweden. Biological Invasions 13: 1077–1086.CrossRefGoogle Scholar
  23. Gupta, H. V., S. Sorooshian & P. O. Yapo, 1999. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. Journal of Hydrologic Engineering 4(2): 135–143.CrossRefGoogle Scholar
  24. Haltuch, M. E. & Berkman, P. A. 1998. The Lake Erie Geographic Information System: Bathymetry, Substrates and Mussels. Ohio State University, Ohio SeaGrant College Program, Publication number OHSU-GS-20.Google Scholar
  25. Haltuch, M. A., P. A. Berkman & D. W. Garton, 2000. Geographic information system (GIS) analysis of an ecosystem invasion: exotic mussels in Lake Erie. Limnology and Oceanography 45: 1778–1787.CrossRefGoogle Scholar
  26. Hecky, R. E., R. E. H. Smith, D. R. Barton, S. J. Guildford, W. D. Taylor, M. N. Charlton & T. Howell, 2004. The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 61: 1285–1293.CrossRefGoogle Scholar
  27. Higgins, S. N. & M. J. Vander Zanden, 2010. What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs 80: 179–196.CrossRefGoogle Scholar
  28. Higgins, S. M., M. J. VanderZanden, L. N. Joppa & Y. Vadeboncoeur, 2011. The effects of dreissenid invasions on chlorophyll and the chlorophyll:total phosphorus ratio in north temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences 68: 319–329.CrossRefGoogle Scholar
  29. Hipsey, M. R. & D. P. Hamilton, 2008. Computational aquatic ecosystems dynamics model: CAEDYM v3 Science Manual. Centre for Water Research Report, University of Western Australia.Google Scholar
  30. Hodges, B. R., J. Imberger, A. Saggio & K. Winters, 2000. Modeling basin scale waves in a stratified lake. Limnology and Oceanography 45: 1603–1620.CrossRefGoogle Scholar
  31. Holland, P. R. & A. Kay, 2003. A review of the physics and ecological implications of the thermal bar circulation. Limnologica 33: 153–162.CrossRefGoogle Scholar
  32. Jarvis, P., J. Dow, R. Dermott & R. Bonnell, 2000. Zebra (Dreissena polymorpha) and quagga mussel (Dreissena bugensis) distribution and density in Lake Erie, 1992–1998. Canadian Technical Report of Fisheries and Aquatic Sciences No. 2304, Burlington, Ontario, Canada: 46 pp.Google Scholar
  33. Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 1997. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. Journal of Shellfish Research 16: 187–203.Google Scholar
  34. Laval, B., J. Imberger, B. R. Hodges & R. Stocker, 2003. Modeling circulation in lakes: spatial and temporal variations. Limnology and Oceanography 48: 983–994.CrossRefGoogle Scholar
  35. Leon, L. F., J. Imberger, R. E. H. Smith, D. Lam & W. Schertzer, 2005. Modeling as a tool for nutrient management in Lake Erie. Journal of Great Lakes Research 31: 309–318.CrossRefGoogle Scholar
  36. Leon, L. F., R. E. H. Smith, M. R. Hipsey, S. A. Bocaniov, S. N. Higgins, R. E. Hecky, J. P. Antenucci, J. A. Imberger & S. J. Guildford, 2011. Application of a 3D hydrodynamic-biological model for seasonal and spatial dynamics of water quality and phytoplankton in Lake Erie. Journal of Great Lakes Research 37: 41–53.CrossRefGoogle Scholar
  37. MacIsaac, H. J., O. E. Johansson, J. Ye, W. G. Sprules, J. H. Leach, J. A. McCorquodale & I. A. Grigorovich, 1999. Filtering impacts of an introduced bivalve (Dreissena polymorpha) in a shallow lake: application of a hydrodynamic model. Ecosystems 2: 338–350.CrossRefGoogle Scholar
  38. Makarewicz, J. C., T. W. Lewis & P. Bertram, 1999. Phytoplankton composition and biomass in the offshore waters of Lake Erie: pre- and post-Dreissena introduction (1983–1993). Journal of Great Lakes Research 25: 135–148.CrossRefGoogle Scholar
  39. Malkin, S. Y., G. M. Silsbe, R. E. H. Smith & E. T. Howell, 2012. A deep chlorophyll maximum nourishes benthic filter feeders in the coastal zone of a large clear lake. Limnology and Oceanography 57: 735–748.CrossRefGoogle Scholar
  40. McMahon, R. F., 1996. The physiological ecology of the zebra mussel, Dreissena polymorpha, in North America and Europe. American Zoologist 36: 339–363.Google Scholar
  41. Millie, D. F., G. L. Fahnenstiel, J. D. Bressie, R. J. Pigg, R. R. Rediske, D. M. Klarer, P. A. Tester & R. W. Litaker, 2009. Late summer phytoplankton in western Lake Erie (Laurentian Great Lakes): bloom distributions, toxicity and environmental influences. Aquatic Ecology 43: 915–934.CrossRefGoogle Scholar
  42. Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel & T. L. Veith, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50: 885–900.CrossRefGoogle Scholar
  43. Naddafi, R., K. Pettersson & P. Eklöv, 2007. The effect of seasonal variation in selective feeding by zebra mussels (Dreissenia polymorpha) on phytoplankton community composition. Freshwater Biology 52: 823–842.CrossRefGoogle Scholar
  44. Naddafi, R., K. Pettersson & P. Eklöv, 2008. Effects of the zebra mussel, an exotic freshwater species, on seston stoichiometry. Limnology and Oceanography 53: 1973–1987.CrossRefGoogle Scholar
  45. Naddafi, R., P. Eklöv & K. Pettersson, 2009. Stoichiometric constraints do not limit successful invaders: zebra mussels in Swedish lakes. PLoS ONE 4(4): e5345.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Naddafi, R., K. Pettersson & P. Eklöv, 2010. Predation and physical environment structure the density and population size structure of zebra mussels. Journal of the North American Benthological Society 29: 444–453.CrossRefGoogle Scholar
  47. Naddafi, R., T. Blenckner, P. Eklöv & K. Pettersson, 2011. Physical and chemical properties determine zebra mussel invasion success in lakes. Hydrobiologia 669: 227–236.CrossRefGoogle Scholar
  48. Nalepa, T. F., D. L. Fanslow & S. A. Pothoven, 2010. Recent changes in density, biomass, recruitment, size structure and nutritional state of Dreissena populations in southern Lake Michigan. Journal of Great Lakes Research 36(Suppl. 3): 5–19.CrossRefGoogle Scholar
  49. Nicholls, K. H., G. J. Hopkins & S. J. Standke, 1999. Reduced chlorophyll to phosphorus ratios in nearshore Great Lakes waters coincide with the establishment of dreissenid mussels. Canadian Journal of Fisheries and Aquatic Sciences 56: 153–161.CrossRefGoogle Scholar
  50. Noonburg, E. G., B. J. Shuter & P. A. Abrams, 2003. Indirect effects of zebra mussels (Dreissena polymorpha) on the planktonic food web. Canadian Journal of Fisheries and Aquatic Sciences 60: 1353–1368.CrossRefGoogle Scholar
  51. North, R. L., R. E. H. Smith, R. E. Hecky, D. C. Depew, L. F. Leon, M. N. Charlton & S. J. Guildford, 2012. Distribution of seston and nutrient concentrations in the eastern basin of Lake Erie pre- and post-dreissenid mussel invasion. Journal of Great Lakes Research 38: 463–476.CrossRefGoogle Scholar
  52. Patterson, M. W. R., J. H. Ciborowski & D. R. Barton, 2005. The distribution and abundance of Dreissena species (Dreissenidae) in Lake Erie, 2002. Journal of Great Lakes Research 31(Suppl. 2): 223–237.CrossRefGoogle Scholar
  53. Radach, G. & A. Moll, 2006. Review of three-dimensional ecological modelling related to the North Sea shelf system. Part II: Model validation and data needs. Oceanography and Marine Biology – An Annual Review 44: 1–60.Google Scholar
  54. Rao, Y. R. & D. J. Schwab, 2007. Transport and mixing between the coastal and offshore waters in the Great Lakes: a review. Journal of Great Lakes Research 33: 202–218.CrossRefGoogle Scholar
  55. Smith, R. E. H., V. P. Hiriart-Baer, S. N. Higgins, S. J. Guildford & M. N. Charlton, 2005. Planktonic primary production in the offshore waters of dreissenid-infested Lake Erie in 1996. Journal of Great Lakes Research 31: 50–62.CrossRefGoogle Scholar
  56. Spillman, C. M., D. P. Hamilton, M. R. Hipsey & J. Imberger, 2008. A spatially resolved model of seasonal variations in phytoplankton and clam (Tapes philippinarum) biomass in Barbamarco Lagoon, Italy. Estuarine, Coastal and Shelf Science 79: 187–203.CrossRefGoogle Scholar
  57. Spillman, C. M., D. P. Hamilton & J. Imberger, 2009. Management strategies to optimise sustainable clam (Tapes philippinarum) harvest in Barbamarco Lagoon, Italy. Estuarine Coastal and Shelf Science 81: 267–278.CrossRefGoogle Scholar
  58. Vanderploeg, H. A., J. R. Liebig, W. W. Carmichael, M. A. Agy, T. H. Johengen, G. L. Fahnenstiel & T. F. Nalepa, 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 58: 1208–1221.CrossRefGoogle Scholar
  59. Vanderploeg, H. A., T. H. Johengen & J. R. Leibig, 2009. Feedback between zebra mussel selective feeding and algal composition affects mussel condition: did the regime changer pay a price for its success? Freshwater Biology 54: 47–63.CrossRefGoogle Scholar
  60. Vanderploeg, H. A., J. R. Liebig, T. F. Nalepa, G. L. Fahnenstiel & S. A. Pothoven, 2010. Dreissena and the disappearance of the spring phytoplankton bloom in Lake Michigan. Journal of Great Lakes Research 36(Suppl. 3): 50–59.CrossRefGoogle Scholar
  61. Walz, N., 1978. The energy balance of the freshwater mussel Dreissena polymorpha Pallas in laboratory experiments and in Lake Constance. I. Pattern of activity, feeding and assimilation efficiency. Archiv für Hydrobiologie, Supplement 55: 83–105.Google Scholar
  62. Werner, S., M. Mörtl, H.-G. Bauer & K.-O. Rothhaupt, 2005. Strong impact of wintering waterbirds on zebra mussel (Dreissena polymorpha) populations at Lake Constance, Germany. Freshwater Biology 50: 1412–1426.CrossRefGoogle Scholar
  63. White, B. & K. Matsumoto, 2012. Causal mechanisms of the deep chlorophyll maximum in Lake Superior: a numerical modeling investigation. Journal of Great Lakes Research 38: 504–513.CrossRefGoogle Scholar
  64. Yu, N. & D. A. Culver, 1999. Estimating the effective clearance rate and refiltration by zebra mussels, Dreissena polymorpha, in a stratified reservoir. Freshwater Biology 41: 481–492.CrossRefGoogle Scholar
  65. Zhang, H., D. A. Culver & L. Boegman, 2008. A two-dimensional ecological model of Lake Erie: application to estimate dreissenid impacts on large lake plankton populations. Ecological Modelling 214: 219–241.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Serghei A. Bocaniov
    • 2
    • 1
  • Ralph E. H. Smith
    • 2
  • Claire M. Spillman
    • 3
  • Matthew R. Hipsey
    • 4
    • 5
  • Luis F. Leon
    • 2
    • 6
  1. 1.Department of Lake ResearchHelmholtz Centre for Environmental Research - UFZMagdeburgGermany
  2. 2.Department of BiologyUniversity of WaterlooWaterlooCanada
  3. 3.Bureau of Meteorology Research CentreMelbourneAustralia
  4. 4.Centre for Water ResearchUniversity of Western AustraliaCrawleyAustralia
  5. 5.School of Earth and EnvironmentUniversity of Western AustraliaCrawleyAustralia
  6. 6.Environment CanadaNational Water Research InstituteBurlingtonCanada

Personalised recommendations