Hydrobiologia

, Volume 731, Issue 1, pp 81–94 | Cite as

Identification of factors constraining nitrate assimilation in Lake Superior, Laurentian Great Lakes

  • John A. Berges
  • Yuelu Jiang
  • Robert W. Sterner
  • George S. Bullerjahn
  • Natalia A. Ivanikova
  • Robert M. L. McKay
EUROPEAN LARGE LAKES III

Abstract

Despite a well-documented rise in nitrate concentration over the past century, Lake Superior has retained an oligotrophic character. In part, this status results from physical attributes of the lake including low temperatures and prolonged isothermy, resulting in deep-mixing and light limitation which constrain primary production. Lake Superior is also phosphorus deficient which limits phytoplankton growth. We conducted large (20 l) volume factorial bioassay experiments to assess the influence of light and nutrients (P, Fe) on nitrate assimilation by a Lake Superior chlorophyte alga. Bioassays seeded with the chlorophyte yielded a strong response to light resulting in the rapid depletion of nitrate. High light resulted in higher activities of the key N-assimilation enzyme nitrate reductase (NR) and increased algal biomass compared to low light treatments. NR activity was highly correlated with rates of nitrate incorporation in bioassays and field surveys suggesting that NR occupies a critical place in nitrate metabolism. In bioassays, the addition of nutrients (P, Fe) only slightly increased the rate at which nitrate became depleted. Parallel trials using a luminescent cyanobacterial bioreporter confirmed the lack of response by added nutrients supporting light as an important factor in constraining nitrate assimilation by phytoplankton in the lake.

Keywords

Lake Superior Light Nitrate Nitrate reductase Phytoplankton 

Supplementary material

10750_2013_1637_MOESM1_ESM.pdf (38 kb)
Supplementary material (PDF 37 kb)
10750_2013_1637_MOESM2_ESM.pdf (43 kb)
Supplementary material (PDF 42 kb)

References

  1. Aleya, L., 1992. The seasonal succession of phytoplankton in an eutrophic lake through the coupling of biochemical-composition of particulates, metabolic parameters and environmental-conditions. Archiv für Hydrobiologie 124: 69–88.Google Scholar
  2. Anagnostou, E. & R. M. Sherrell, 2008. MAGIC method for subnanomolar orthophosphate determination in freshwater. Limnology and Oceanography: Methods 6: 64–74.CrossRefGoogle Scholar
  3. Andersen, R. A., J. A. Berges, P. J. Harrison & M. M. Watanabe, 2005. Appendix A. Recipes for freshwater and seawater media. In Andersen, R. A. (ed.), Algal Culturing Techniques. Elsevier, Amsterdam: 429–538.Google Scholar
  4. Barbiero, R. P. & M. L. Tuchman, 2001. Results from U.S. EPA’s biological open water surveillance program of the Laurentian Great Lakes: I. Introduction and phytoplankton results. Journal of Great Lakes Research 27: 134–154.CrossRefGoogle Scholar
  5. Barbiero, R. P. & M. L. Tuchman, 2004. The deep chlorophyll maximum in Lake Superior. Journal of Great Lakes Research 30: 256–268.CrossRefGoogle Scholar
  6. Beeton, A. M., 1965. Eutrophication of the St. Lawrence Great Lakes. Limnology and Oceanography 10: 240–254.CrossRefGoogle Scholar
  7. Bennett, E. B., 1986. The nitrifying of Lake Superior. Ambio 15: 272–275.Google Scholar
  8. Berges, J. A., 1997. Algal nitrate reductases. European Journal of Phycology 32: 3–8.CrossRefGoogle Scholar
  9. Berges, J. A. & P. J. Harrison, 1995a. Nitrate reductase activity quantitatively predicts the rate of nitrate incorporation under steady state light limitation: a revised assay and characterization of the enzyme in three species of marine phytoplankton. Limnology and Oceanography 40: 82–93.CrossRefGoogle Scholar
  10. Berges, J. A. & P. J. Harrison, 1995b. Relationships between nitrate reductase activity and rates of growth and nitrate incorporation under steady-state light or nitrate limitation in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Journal of Phycology 31: 85–95.CrossRefGoogle Scholar
  11. Berges, J. A., W. P. Cochlan & P. J. Harrison, 1995. Laboratory and field responses of algal nitrate reductase to diel periodicity in irradiance, nitrate exhaustion, and the presence of ammonium. Marine Ecology Progress Series 124: 259–269.CrossRefGoogle Scholar
  12. Berges, J. A., C. E. Gibson & B. M. Stewart, 2004. Physiological responses of phytoplankton communities in the Irish Sea to simulated upwelling. Hydrobiologia 517: 121–132.CrossRefGoogle Scholar
  13. Boyd, P., J. A. Berges & P. J. Harrison, 1998. In vitro iron enrichment experiments at iron-rich and -poor sites in the NE subarctic Pacific. Journal of Experimental Marine Biology and Ecology 227: 133–151.CrossRefGoogle Scholar
  14. Carlton, R. G., G. S. Walker, M. J. Klug & R. G. Wetzel, 1989. Relative values of oxygen, nitrate, and sulfate to terminal microbial processes in the sediments of Lake Superior. Journal of Great Lakes Research 15: 133–140.CrossRefGoogle Scholar
  15. Chapra, S. C., A. Dove & G. J. Warren, 2012. Long-term trends of Great Lakes major ion chemistry. Journal of Great Lakes Research 38: 550–560.CrossRefGoogle Scholar
  16. Conroy, J. D., D. D. Kane, D. M. Dolan, W. J. Edwards, M. N. Charlton & D. A. Culver, 2005. Temporal trends in Lake Erie plankton biomass: roles of external phosphorus loading and dreissenid mussels. Journal of Great Lakes Research 31: 89–110.CrossRefGoogle Scholar
  17. Cullen, J. & E. Renger, 1979. Continuous measurement of the DCMU-induced fluorescence response of natural phytoplankton populations. Marine Biology 53: 13–20.CrossRefGoogle Scholar
  18. DeYoe, H. R. & C. A. Suttle, 1994. The inability of the Texas “brown tide” alga to use nitrate and the role of nitrogen in the initiation of a persistent bloom of this organism. Journal of Phycology 30: 800–806.CrossRefGoogle Scholar
  19. Dove, A., 2009. Long-term trends in major ions and nutrients in Lake Ontario. Aquatic Ecosystem Health & Management 12: 281–295.CrossRefGoogle Scholar
  20. Finlay, J. C., R. W. Sterner & S. Kumar, 2007. Isotopic evidence for in-lake production of accumulating nitrate in Lake Superior. Ecological Applications 17: 2323–2332.PubMedCrossRefGoogle Scholar
  21. Galloway, J. N., J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth, E. B. Cowling & B. J. Cosby, 2003. The nitrogen cascade. BioScience 53: 341–356.CrossRefGoogle Scholar
  22. Gordillo, F. J. L., R. Garcia-Ruiz, A. Corzo, J. Lucena & F. X. Niell, 2001. Nitrate reductase activity in an eutrophic reservoir during the stratification cycle. International Review of Hydrobiology 86: 603–618.CrossRefGoogle Scholar
  23. Guildford, S. J. & R. E. Hecky, 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnology and Oceanography 45: 1213–1223.CrossRefGoogle Scholar
  24. Guildford, S. J., H. A. Bootsma, E. J. Fee, R. E. Hecky & G. Patterson, 2000. Phytoplankton nutrient status and mean water column irradiance in Lakes Malawi and Superior. Aquatic Ecosystem Health & Management 3: 35–45.CrossRefGoogle Scholar
  25. Hassler, C. S., S. M. Havens, G. S. Bullerjahn, R. M. L. McKay & M. R. Twiss, 2009. An evaluation of iron bioavailability and speciation in western Lake Superior with the use of combined physical, chemical, and biological assessment. Limnology and Oceanography 54: 987–1001.CrossRefGoogle Scholar
  26. Hawley, N., T. H. Johengren, Y. R. Rao, A. Ruberg, D. Beletsky, S. A. Ludsin, B. J. Eadie, D. J. Schwab, T. E. Croley & S. B. Brandt, 2006. Lake Erie hypoxia prompts Canada—U.S. study. Eos, Transactions, American Geophysical Union 87: 313–314.CrossRefGoogle Scholar
  27. Healey, F. P. & L. L. Hendzel, 1979. Fluorometric measurement of alkaline phosphatase activity in algae. Freshwater Biology 9: 429–439.CrossRefGoogle Scholar
  28. Hecky, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography 33: 796–822.CrossRefGoogle Scholar
  29. Hochman, A., A. Nissany, D. Wynne, B. Kaplan & T. Berman, 1986. Nitrate reductase: an improved assay method for phytoplankton. Journal of Plankton Research 8: 385–392.CrossRefGoogle Scholar
  30. Hung, C. C., G. T. F. Wong, K. K. Liu, F. K. Shiah & G. C. Gong, 2000. The effects of light and nitrate levels on the relationship between nitrate reductase activity and 15NO3 uptake: field observations in the East China Sea. Limnology and Oceanography 45: 836–848.CrossRefGoogle Scholar
  31. Ivanikova, N. V., R. M. L. McKay & G. S. Bullerjahn, 2005. Construction and characterization of a cyanobacterial bioreporter capable of assessing nitrate assimilatory capacity in freshwaters. Limnology and Oceanography: Methods 3: 86–93.CrossRefGoogle Scholar
  32. Ivanikova, N. V., R. M. L. McKay, G. S. Bullerjahn & R. W. Sterner, 2007a. Nitrate utilization by phytoplankton in Lake Superior is impaired by low nutrient (P, Fe) availability and seasonal light limitation—a cyanobacterial bioreporter study. Journal of Phycology 43: 475–484.CrossRefGoogle Scholar
  33. Ivanikova, N. V., L. C. Popels, R. M. L. McKay & G. S. Bullerjahn, 2007b. Lake Superior supports novel clusters of cyanobacterial picoplankton. Applied and Environmental Microbiology 73: 4055–4065.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Kelly, J. R., P. M. Yurista, S. E. Miller, A. C. Cotter, T. C. Corry, J. V. Scharold, M. E. Sierszen, E. J. Issac & J. D. Stockwell, 2011. Challenges to Lake Superior’s condition, assessment and management: a few observations across a generation of change. Aquatic Ecosystem Health & Management 14: 332–344.CrossRefGoogle Scholar
  35. Kumar, S., R. W. Sterner & J. C. Finlay, 2008. Nitrogen and carbon uptake dynamics in Lake Superior. Journal of Geophysical Research 113: G04003.Google Scholar
  36. Li, J., S. A. Crowe, D. Miklesh, M. Kistner, D. E. Canfield & S. Katsev, 2012. Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior. Limnology and Oceanography 57: 1634–1650.CrossRefGoogle Scholar
  37. Lu, Y., P. A. Meyers, T. H. Johengen, B. J. Eadie, J. A. Robbins & H. Han, 2010. δ15N values in Lake Erie sediments as indicators of nitrogen biogeochemical dynamics during cultural eutrophication. Chemical Geology 273: 1–7.CrossRefGoogle Scholar
  38. Mackey, M. D., D. J. Mackey, H. W. Higgens & S. W. Wright, 1996. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology Progress Series 144: 265–283.CrossRefGoogle Scholar
  39. Mackey, D. J., H. W. Higgins, M. D. Mackey & D. Holdsworth, 1998. Algal class abundances in the western equatorial Pacific: estimation from HPLC measurements of chloroplast pigments using CHEMTAX. Deep Sea Research Part I: Oceanographic Research Papers 45: 1441–1468.CrossRefGoogle Scholar
  40. Makarewicz, J. C., P. Bertram & T. W. Lewis, 2000. Chemistry of the offshore surface waters of Lake Erie: pre- and post-Dreissena introduction (1983–1993). Journal of Great Lakes Research 26: 82–93.CrossRefGoogle Scholar
  41. Mallet, C., M. Charpin & J. Devaux, 1998. Nitrate reductase activity of phytoplankton populations in eutrophic Lake Aydat and meso-oligotrophic Lake Pavin: a comparison. Hydrobiologia 374: 135–148.CrossRefGoogle Scholar
  42. McCarthy, M. J., W. S. Gardner, P. J. Lavrentyev, K. M. Moats, F. J. Jochem & D. M. Klarer, 2007. Effects of hydrological flow regime on sediment–water interface and water column nitrogen dynamics in a Great Lakes coastal watershed (Old Woman Creek, Lake Erie). Journal of Great Lakes Research 33: 219–231.CrossRefGoogle Scholar
  43. McDonald, C. P., N. R. Urban & C. M. Casey, 2010. Modeling historical trends in Lake Superior total nitrogen concentrations. Journal of Great Lakes Research 36: 715–721.CrossRefGoogle Scholar
  44. McKay, R. M. L., D. Porta, G. S. Bullerjahn, M. M. D. Al-Rshaidat, J. A. Klimowicz, R. W. Sterner, T. A. Smutka, E. T. Brown & R. M. Sherrell, 2005. Bioavailable iron in oligotrophic Lake Superior assessed using biological reporters. Journal of Plankton Research 27: 1033–1044.CrossRefGoogle Scholar
  45. Menzel, D. W. & N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnology and Oceanography 10: 280–282.CrossRefGoogle Scholar
  46. Millie, D. F., G. L. Fahnenstiel, J. Dyble Bressie, R. J. Pigg, R. R. Rediske, D. Klarer, P. A. Tester & R. W. Litaker, 2009. Late-summer phytoplankton in western Lake Erie (Laurentian Great Lakes): bloom distributions, toxicity, and environmental influences. Aquatic Ecology 43: 915–934.CrossRefGoogle Scholar
  47. Moore, L. R., A. F. Post, G. Rocap & S. W. Chisholm, 2002. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnology and Oceanography 47: 989–996.CrossRefGoogle Scholar
  48. Morris, I. & P. J. Syrett, 1963. The development of nitrate reductase in Chlorella and its repression by ammonium. Archiv für Mikrobiologie 47: 32–41.CrossRefGoogle Scholar
  49. Nalewajko, C. & D. Voltolina, 1986. Effects of environmental variables on growth rates and physiological characteristics of Lake Superior phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 43: 1163–1170.CrossRefGoogle Scholar
  50. Needoba, J. A. & P. J. Harrison, 2004. Influence of low light and a light: dark cycle on NO3 uptake, intracellular NO3 , and nitrogen isotope fractionation by marine phytoplankton. Journal of Phycology 40: 505–516.CrossRefGoogle Scholar
  51. Neilson, M. A., D. S. Painter, G. Warren, R. A. Hites, I. Basu, D. V. C. Weseloh, D. M. Whittle, G. Christie, R. Barbiero, M. Tuchman, O. E. Johannsson, T. F. Nalepa, T. A. Edsall, G. Fleischer, C. Bronte, S. B. Smith & P. C. Baumann, 2003. Ecological monitoring for assessing the state of the nearshore and open waters of the Great Lakes. Environmental Monitoring and Assessment 88: 103–117.PubMedCrossRefGoogle Scholar
  52. Nriagu, J. O., G. Lawson, H. K. T. Wong & V. Cheam, 1996. Dissolved trace metals in Lakes Superior, Erie, and Ontario. Environmental Science and Technology 30: 178–187.CrossRefGoogle Scholar
  53. Parsons, T., M. Maita & C. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergammon Press, Oxford.Google Scholar
  54. Rhee, G. Y., 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnology and Oceanography 23: 10–25.CrossRefGoogle Scholar
  55. Richards, R. P. & D. B. Baker, 1993. Trends in nutrient and suspended sediment concentrations in Lake Erie tributaries, 1975–1990. Journal of Great Lakes Research 19: 200–211.CrossRefGoogle Scholar
  56. Rufty, T. W., C. T. MacKown & D. W. Israel, 1990. Phosphorus stress effects on assimilation of nitrate. Plant Physiology 94: 328–333.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Schindler, D. W., 2006. Recent advances in the understanding and management of eutrophication. Limnology and Oceanography 51: 356–363.CrossRefGoogle Scholar
  58. Sinsabaugh, R. L., S. Findlay, P. Franchini & D. Fischer, 1997. Enzymatic analysis of riverine bacterioplankton production. Limnology and Oceanography 42: 29–38.CrossRefGoogle Scholar
  59. Small, G. E., G. S. Bullerjahn, R. W. Sterner, B. F. N. Beall, S. Brovold, J. C. Finlay, R. M. L. McKay & M. Mukherjee, 2013a. Rates and controls of nitrification in a large oligotrophic lake. Limnology and Oceanography 58: 276–286.CrossRefGoogle Scholar
  60. Small, G. E., J. B. Cotner, J. C. Finlay, R. A. Stark & R. W. Sterner, 2013b. Nitrogen transformations at the sediment–water interface across redox gradients in the Laurentian Great Lakes. Hydrobiologia. doi:10.1007/s10750-013-1569-7.
  61. Sterner, R. W., 2010. In situ measured primary production in Lake Superior. Journal of Great Lakes Research 36: 139–149.CrossRefGoogle Scholar
  62. Sterner, R. W., 2011. C:N:P stoichiometry in Lake Superior: freshwater sea as end member. Inland Waters 1: 29–46.CrossRefGoogle Scholar
  63. Sterner, R. W., T. M. Smutka, R. M. L. McKay, Q. Xiaoming, E. T. Brown & R. M. Sherrell, 2004. Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnology and Oceanography 49: 495–507.CrossRefGoogle Scholar
  64. Sterner, R. W., E. Anagnostou, S. Brovold, G. S. Bullerjahn, J. C. Finlay, S. Kumar, R. M. L. McKay & R. M. Sherrell, 2007. Increasing stoichiometric imbalance in North America’s largest lake: nitrification in Lake Superior. Geophysical Research Letters 34: L10406.CrossRefGoogle Scholar
  65. U.S. Environmental Protection Agency, 1971. Algal Assay Procedure: Bottle Test. National Eutrophication Research Program, Corvallis, OR: 82 pp.Google Scholar
  66. Vergara, J. J., J. A. Berges & P. G. Falkowski, 1998. Diel periodicity of nitrate reductase activity and protein levels in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). Journal of Phycology 34: 952–961.CrossRefGoogle Scholar
  67. Weiler, R., 1978. Chemistry of Lake Superior. Journal of Great Lakes Research 4: 370–385.CrossRefGoogle Scholar
  68. Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39: 1985–1992.CrossRefGoogle Scholar
  69. Wynne, D. & T. Berman, 1990. The influence of environmental factors on nitrate reductase activity in freshwater phytoplankton. I. Field studies. Hydrobiologia 194: 235–245.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • John A. Berges
    • 1
  • Yuelu Jiang
    • 1
  • Robert W. Sterner
    • 2
  • George S. Bullerjahn
    • 3
  • Natalia A. Ivanikova
    • 3
  • Robert M. L. McKay
    • 3
  1. 1.Department of Biological Sciences & School of Freshwater SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeUSA
  2. 2.Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt. PaulUSA
  3. 3.Department of Biological SciencesBowling Green State UniversityBowling GreenUSA

Personalised recommendations